题目内容
【题目】已知函数f(x)=ln(x+2a)﹣ax,a>0.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)记f(x)的最大值为M(a),若a2>a1>0且M(a1)=M(a2),求证: ;
(Ⅲ)若a>2,记集合{x|f(x)=0}中的最小元素为x0 , 设函数g(x)=|f(x)|+x,求证:x0是g(x)的极小值点.
【答案】解:(Ⅰ):f′(x)= ﹣a= ,
∵x>﹣2a,a>0,
由f′(x)>0,得﹣2a<x< ﹣2a,
由f′(x)<0,得x> ﹣2a,
∴f(x)的增区间为(﹣2a, ﹣2a),减区间为( ﹣2a,+∞),
(Ⅱ)由(Ⅰ)知,M(a)=f( ﹣2a)=2a2﹣1﹣lna,
∴2a12﹣1﹣lna1=2a22﹣1﹣lna2,
∴2(a22﹣a12)=lna2﹣lna1=ln ,
∴2a1a2 =ln ,
∴4a1a2( ﹣ )=2ln ,
∴4a1a2= ,
设h(t)=t﹣ ﹣2lnt,t>1
∴h′(t)=1+ ﹣ =(1﹣ )2>0,
∴h(x)在(1,+∞)单调递增,h(t)>h(1)=0,
即t﹣ >2lnt>0,
∵ >1,
∴ ﹣ >2ln >0,
∴ <1,
∴a1a2< ;
(Ⅲ)由(Ⅰ)可知,f(x)在区间(﹣2a, ﹣2a),
又x→﹣2a时,f(x)→﹣∞,
易知f( ﹣2a)=M(a)=2a2﹣1﹣lna在(2,+∞)递增,
M(a)>M(2)=7﹣ln2>0,
∴﹣2a<x0< ﹣2a,且﹣2a<x<x0,f(x)<0,
x0<x< ﹣2a时,f(x)>0,
∴当﹣2a<x< ﹣2a时,g(x)= ,
于是﹣2a<x<x0时,g′(x)=(a+1)﹣ <a+1﹣ ,
∴若能证明x0< ﹣2a,便能证明(a+1)﹣ <0,
记φ(a)=f( ﹣2a)=2a2+ ﹣1﹣ln(a+1),
∴φ(a)=4a﹣ ﹣ ,
∵a>2,
∴h′(a)>8﹣ >0,
∴φ(a)在(2,+∞)上单调递增,
∴φ(a)>φ(2)= ﹣ln3>0,
∵ ﹣2a< ﹣2a,
∴f(x)在(﹣2a, ﹣2a)内单调递减,
∴x0∈(﹣2a, ﹣2a),
于是﹣2a<x<x0时,g′(x)=a+1﹣ <a+1﹣ =0,
∴g(x)在(﹣2a,x0)递减,
当x0<x< ﹣2a时,相应的g′(x)= ﹣(a﹣1)> ﹣(a﹣1)=1>0,
∴g(x)在(x0, ﹣2a)递增,
故x0是g(x)的极小值点.
【解析】(Ⅰ)先求导,根据导数和函数单调性的关系即可得到函数的单调区间,(Ⅱ)由(Ⅰ)知,M(a)=f( ﹣2a)=2a2﹣1﹣lna,继而得到2a12﹣1﹣lna1=2a22﹣1﹣lna2,通过转化得到4a1a2= ,设h(t)=t﹣ ﹣2lnt,t>1根据函数的单调性证明 <1,问题即可得以证明,(Ⅲ)由(Ⅰ)可得,g(x)= ,分类讨论,得到g(x)在(﹣2a,x0)递减,g(x)在(x0, ﹣2a)递增,故x0是g(x)的极小值点.
【考点精析】本题主要考查了利用导数研究函数的单调性和函数的最大(小)值与导数的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值才能正确解答此题.