题目内容
(此题平行班做)(本小题满分12分)
某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:
(Ⅰ)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是,请完成上面的列联表;
(Ⅱ)在(1)的条件下,试运用独立性检验的思想方法分析:在犯错误概率不超过0.1%的情况下判断学生的学习积极性与对待班级工作的态度是否有关?并说明理由.
某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:
(Ⅰ)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是,请完成上面的列联表;
解:(Ⅰ)如果随机抽查这个班的一名学生,抽到积极参加班级工作的学生的概率是,所以积极参加班级工作的学生有人,以此可以算出学习积极性一般且积极参加班级工作的人数为6,不太主动参加班级共工作的人数为26,学习积极性高但不太主动参加班级工作得人数为7,学习积极性高的人数为25,学习积极性一边拿的人数为25,得到变革如下:
| 积极参加班级工作 | 不太主动参加班级工作 | 合计 |
学习积极性高 | 18 | 7 | 25 |
学习积极性一般 | 6 | 19 | 25 |
合计 | 24 | 26 | 50 |
(Ⅱ)==≈11.5,
∵>10.828,∴有99.9%的把握认为学习积极性与对待班级工作的态度有关系.………12分
略
练习册系列答案
相关题目