题目内容
(12分)已知数列
的前
项和为
,且
对一切正整数
都成立.
(1)求
,
的值;
(2)设
,数列
的前
项和为
,当
为何值时,
最大?并求出
的最大值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233628972456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233629035297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233629175388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233629191633.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233629035297.png)
(1)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233629222315.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233629253344.png)
(2)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233629269430.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233629409718.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233629035297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233629612373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233629035297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233629612373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233629612373.png)
(1)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233629861763.png)
(2),n=7时,Tn取得最大值,且Tn的最大值为 T7=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233629861763.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233629893748.png)
(2),n=7时,Tn取得最大值,且Tn的最大值为 T7=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232336299081021.png)
(1)令n=1则![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233629986765.png)
再令n=2可得
然后两方程联立可解得
,
的值.
(2)在(1)的基础上,可知![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233629861763.png)
再根据
, (2+
)an-1=S2+Sn-1
所以an=
,
据此可知{an}是等比数列,因而
,
所以
,所以可知数列{bn}是以
为公差,且单调递减的等差数列.然后根据bn>0可解出n的范围,从而确定Tn的最大值.
取n=1,得
①
取n=2,得
②
又②-①,得
③
(1)若a2="0," 由①知a1=0,
(2)若a2
, ④
由①④得:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233629861763.png)
(2)当a1>0时,由(I)知,
当
, (2+
)an-1=S2+Sn-1
所以,an=
所以
令
所以,数列{bn}是以
为公差,且单调递减的等差数列.
则 b1>b2>b3>>b7=
当n≥8时,bn≤b8=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233630797697.png)
所以,n=7时,Tn取得最大值,且Tn的最大值为
T7=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233629986765.png)
再令n=2可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233630002621.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233629222315.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233629253344.png)
(2)在(1)的基础上,可知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233629861763.png)
再根据
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232336300951052.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233630142336.png)
所以an=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233630158758.png)
据此可知{an}是等比数列,因而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232336301891018.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232336302201744.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233630236535.png)
取n=1,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233629986765.png)
取n=2,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233630002621.png)
又②-①,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233630298595.png)
(1)若a2="0," 由①知a1=0,
(2)若a2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233630329685.png)
由①④得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233629861763.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233629893748.png)
(2)当a1>0时,由(I)知,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233629861763.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232336300951052.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233630142336.png)
所以,an=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233630158758.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232336301891018.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232336306571713.png)
所以,数列{bn}是以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233630236535.png)
则 b1>b2>b3>>b7=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233630704714.png)
当n≥8时,bn≤b8=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233630797697.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233630813614.png)
所以,n=7时,Tn取得最大值,且Tn的最大值为
T7=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232336299081021.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目