题目内容
已知直线y=-2上有一个动点Q,过点Q作直线l1垂直于x轴,动点P在l1上,且满足OP⊥OQ(O为坐标原点),记点P的轨迹为C.
(1)求曲线C的方程.
(2)若直线l2是曲线C的一条切线,当点(0,2)到直线l2的距离最短时,求直线l2的方程.
(1)求曲线C的方程.
(2)若直线l2是曲线C的一条切线,当点(0,2)到直线l2的距离最短时,求直线l2的方程.
(1) x2=2y(x≠0) (2)
x-y-1=0或
x+y+1=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040418155371.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040418155371.png)
(1)设点P的坐标为(x,y),则点Q的坐标为(x,-2).
∵OP⊥OQ,∴当x=0时,P,O,Q三点共线,不符合题意,故x≠0.当x≠0时,得kOP·kOQ=-1,即
·
=-1,化简得x2=2y,
∴曲线C的方程为x2=2y(x≠0).
(2)∵直线l2与曲线C相切,∴直线l2的斜率存在.
设直线l2的方程为y=kx+b,
由
得x2-2kx-2b=0.
∵直线l2与曲线C相切,
∴Δ=4k2+8b=0,即b=-
.
点(0,2)到直线l2的距离
d=
=
·![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040418280516.png)
=
(
+
)
≥
×2![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040418358791.png)
=
.
当且仅当
=
,即k=±
时,等号成立.此时b=-1.
∴直线l2的方程为
x-y-1=0或
x+y+1=0.
∵OP⊥OQ,∴当x=0时,P,O,Q三点共线,不符合题意,故x≠0.当x≠0时,得kOP·kOQ=-1,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040418186304.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040418202309.png)
∴曲线C的方程为x2=2y(x≠0).
(2)∵直线l2与曲线C相切,∴直线l2的斜率存在.
设直线l2的方程为y=kx+b,
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040418217763.png)
∵直线l2与曲线C相切,
∴Δ=4k2+8b=0,即b=-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040418233352.png)
点(0,2)到直线l2的距离
d=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040418248497.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040418264298.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040418280516.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040418264298.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040418311461.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040418326440.png)
≥
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040418264298.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040418358791.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040418373363.png)
当且仅当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040418311461.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040418326440.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040418155371.png)
∴直线l2的方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040418155371.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040418155371.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目