题目内容
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,直线过原点且倾斜角为.以坐标原点为极点,轴正半轴为极轴建立坐标系,曲线的极坐标方程为.在平面直角坐标系中,曲线与曲线关于直线对称.
(Ⅰ)求曲线的极坐标方程;
(Ⅱ)若直线过原点且倾斜角为,设直线与曲线相交于,两点,直线与曲线相交于,两点,当变化时,求面积的最大值.
【答案】(Ⅰ) (Ⅱ)
【解析】
(Ⅰ)法一:将化为直角坐标方程,根据对称关系用上的点表示出上点的坐标,代入方程得到的直角坐标方程,再化为极坐标方程;法二:将化为极坐标方程,根据对称关系将上的点用上的点坐标表示出来,代入极坐标方程即可得到结果;(Ⅱ)利用和的极坐标方程与的极坐标方程经坐标用表示,将所求面积表示为与有关的三角函数解析式,通过三角函数值域求解方法求出所求最值.
(Ⅰ)法一:由题可知,的直角坐标方程为:,
设曲线上任意一点关于直线对称点为,
所以
又因为,即,
所以曲线的极坐标方程为:
法二:由题可知,的极坐标方程为: ,
设曲线上一点关于 的对称点为,
所以
又因为,即,
所以曲线的极坐标方程为:
(Ⅱ)直线的极坐标方程为:,直线的极坐标方程为:
设,
所以解得,解得
因为:,所以
当即时,,取得最大值为:
【题目】在抽取彩票“双色球”中奖号码时,有33个红色球,每个球的编号分别为01,02,…,33.一位彩民用随机数表法选取6个号码作为6个红色球的编号,选取方法是从下面的随机数表中第1行第6列的数字3开始,从左向右读数,则依次选出的第3个红色球的编号为( )
49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 |
57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 |
A.21B.32C.09D.20
【题目】为迎接2022年北京冬季奥运会,普及冬奥知识,某校开展了“冰雪答题王”冬奥知识竞赛活动.现从参加冬奥知识竞赛活动的学生中随机抽取了100名学生,将他们的比赛成绩(满分为100分)分为6组:,,,,,,得到如图所示的频率分布直方图.
(1)求的值;
(2)估计这100名学生的平均成绩(同一组中的数据用该组区间的中点值为代表);
(3)在抽取的100名学生中,规定:比赛成绩不低于80分为“优秀”,比赛成绩低于80分为“非优秀”.请将下面的2×2列联表补充完整,并判断是否有99.9%的把握认为“比赛成绩是否优秀与性别有关”?
优秀 | 非优秀 | 合计 | |
男生 | 40 | ||
女生 | 50 | ||
合计 | 100 |
参考公式及数据:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】已知平面直角坐标系,直线过点,且倾斜角为,以为极点,轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为.
(1)求直线的参数方程和圆的标准方程;
(2)设直线与圆交于、两点,若,求直线的倾斜角的值.
【题目】据统计,某地区植被覆盖面积公顷与当地气温下降的度数之间呈线性相关关系,对应数据如下:
公顷 | 20 | 40 | 60 | 80 |
3 | 4 | 4 | 5 |
请用最小二乘法求出y关于x的线性回归方程;
根据中所求线性回归方程,如果植被覆盖面积为300公顷,那么下降的气温大约是多少?
参考公式:线性回归方程;其中,.