题目内容
【题目】【题目】已知抛物线的焦点曲线的一个焦点, 为坐标原点,点为抛物线上任意一点,过点作轴的平行线交抛物线的准线于,直线交抛物线于点.
(Ⅰ)求抛物线的方程;
(Ⅱ)求证:直线过定点,并求出此定点的坐标.
【答案】(I);(II)证明见解析.
【解析】试题分析:(Ⅰ)将曲线化为标准方程,可求得的焦点坐标分别为,可得,所以,即抛物线的方程为;(Ⅱ)结合(Ⅰ),可设,得,从而直线的方程为,联立直线与抛物线方程得,解得,直线的方程为,整理得的方程为,此时直线恒过定点.
试题解析:(Ⅰ)由曲线,化为标准方程可得, 所以曲线是焦点在轴上的双曲线,其中,故, 的焦点坐标分别为,因为抛物线的焦点坐标为,由题意知,所以,即抛物线的方程为.
(Ⅱ)由(Ⅰ)知抛物线的准线方程为,设,显然.故,从而直线的方程为,联立直线与抛物线方程得,解得
①当,即时,直线的方程为,
②当,即时,直线的方程为,整理得的方程为,此时直线恒过定点, 也在直线的方程为上,故直线的方程恒过定点.
练习册系列答案
相关题目