题目内容

在区间【-】内随机取两个数分别记作a,b。则使得函数=++有零点的概率为                                                       (    )

A.B.C.D.

B

解析试题分析:先判断概率的类型,由题意知本题是一个几何概型,由a,b使得函数f(x)=x2+2ax-b2+π有零点,得到关于a、b的关系式,写出试验发生时包含的所有事件和满足条件的事件,做出对应的面积,求比值得到结果.解:由题意知本题是一个几何概型,∵a,b使得函数f(x)=x2+2ax-b2+π有零点,∴△≥0,∴a2+b2≥π,试验发生时包含的所有事件是Ω={(a,b)|-π≤a≤π,-π≤b≤π}∴S=(2π)2=4π2,而满足条件的事件是{(a,b)|a2+b2≥π},∴s=4π22=3π2,由几何概型公式得到P=故选B.
考点:几何概型
点评:高中必修中学习了几何概型和古典概型两种概率问题,先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.再看是不是几何概型,它的结果要通过长度、面积或体积之比来得到.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网