题目内容
【题目】平行志愿投档录取模式是高考志愿的一种新方式,2008年教育部在6个省区实行平行志愿投档录取模式的试点改革.一年的实践证叨,实行平行志愿投档录取模式,有效降低了考生志愿填报风险.平行志愿是这样规定:在同一批次设置几个志愿,当考生分数达到这几个学校提档线时,本批次的志愿依次检索录取.某考生根据对自己的高考分数和对往年学校录取情况分析,从报考指南中选择了10所学校,作出如下表格:
学校 | ||||||||||
专业 | 数学系 | 计算机系 | 物理系 | |||||||
录取概率 | 0.5 | 0.5 | 0.6 | 0.9 | 0.5 | 0.7 | 0.8 | 0.7 | 0.8 | 0.9 |
(1)该考生从上表中的10所学校中选择4所学校填报,记为选择的4所学校中报数学系专业的个数,求的分布列及其期望;
(2)若该考生选择了、、、这4个学校在同一批次填报志愿,填报志愿表如下,如果仅以该考生对自己分析的录取概率为依据,当改变这4个志愿填报的顺序时,是否改变他本批次录取的可能性?请说明理由.
志愿 | 学校 |
第一志愿 | |
第二志愿 | |
第三志愿 | |
第四志愿 |
【答案】(1)详见解析(2)不改变他本批次录取的可能性,详见解析
【解析】
(1)根据超几何分布的分布列和数学期望计算公式,计算出分布列和数学期望.
(2)计算出该考生在本批次未被录取的概率,由此判断出当改变这4个志愿填报的顺序时,不改变他本批次录取的可能性.
(1)可能取的值为0,1,2,3,4,
,,,,
的分布列:
0 | 1 | 2 | 3 | 4 | |
(2)选择、、、这4个学校的概率依次设为,,,.
该考生在本批次被录取的概率为
所以,当改变这4个志愿填报的顺序时,不改变他本批次录取的可能性.
另解:该考生在本批次未被录取的概率为
该考生在本批次被录取的概率为
所以,当改变这4个志愿填报的顺序时,不改变他本批次录取的可能性.
【题目】有一片产量很大的水果种植园,在临近成熟时随机摘下某品种水果100个,其质量(均在l至11kg)频数分布表如下(单位: kg):
分组 |
|
|
|
|
|
频数 | 10 | 15 | 45 | 20 | 10 |
以各组数据的中间值代表这组数据的平均值,将频率视为概率.
(1)由种植经验认为,种植园内的水果质量近似服从正态分布,其中近似为样本平均数近似为样本方差.请估算该种植园内水果质量在内的百分比;
(2)现在从质量为 的三组水果中用分层抽样方法抽取14个水果,再从这14个水果中随机抽取3个.若水果质量的水果每销售一个所获得的的利润分别为2元,4元,6元,记随机抽取的3个水果总利润为元,求的分布列及数学期望.
附: ,则.
【题目】近五年来某草场羊只数量与草场植被指数两变量间的关系如表所示,绘制相应的散点图,如图所示:
年份 | 1 | 2 | 3 | 4 | 5 |
羊只数量(万只) | 1.4 | 0.9 | 0.75 | 0.6 | 0.3 |
草地植被指数 | 1.1 | 4.3 | 15.6 | 31.3 | 49.7 |
根据表及图得到以下判断:①羊只数量与草场植被指数成减函数关系;②若利用这五组数据得到的两变量间的相关系数为,去掉第一年数据后得到的相关系数为,则;③可以利用回归直线方程,准确地得到当羊只数量为2万只时的草场植被指数;以上判断中正确的个数是( )
A.0B.1C.2D.3