题目内容

16.已知x>0,y>0,且x+y=1,求(x+$\frac{1}{x}$)2+(y+$\frac{1}{y}$)2的最小值.

分析 由基本不等式可得0<xy≤$\frac{1}{4}$,进而可得(x+$\frac{1}{x}$)2+(y+$\frac{1}{y}$)2=≥2(xy+$\frac{1}{xy}$)+4,令xy=t,由“对勾函数”的单调性可得.

解答 解:x>0,y>0,且x+y=1,∴1=x+y≥2$\sqrt{xy}$,
∴0<xy≤$\frac{1}{4}$,当且仅当x=y=$\frac{1}{2}$时取等号,
∴(x+$\frac{1}{x}$)2+(y+$\frac{1}{y}$)2=x2+$\frac{1}{{x}^{2}}$+2+y2+$\frac{1}{{y}^{2}}$+2
=x2+y2+$\frac{1}{{x}^{2}}$+$\frac{1}{{y}^{2}}$+4≥2(xy+$\frac{1}{xy}$)+4,
令xy=t,则t∈(0,$\frac{1}{4}$],
∵函数y=t+$\frac{1}{t}$在t∈(0,$\frac{1}{4}$]上单调递减,
∴当t=$\frac{1}{4}$时,y=t+$\frac{1}{t}$取最小值$\frac{17}{4}$,
∴xy+$\frac{1}{xy}$≥$\frac{17}{4}$,∴(x+$\frac{1}{x}$)2+(y+$\frac{1}{y}$)2≥2(xy+$\frac{1}{xy}$)+4≥$\frac{25}{2}$
∴(x+$\frac{1}{x}$)2+(y+$\frac{1}{y}$)2的最小值为$\frac{25}{2}$,当且仅当x=y=$\frac{1}{2}$时取等号

点评 本题考查基本不等式求最值,涉及“对勾函数”的单调性,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网