题目内容
设函数f(x)=(x3-1)2,下列结论中正确的是( )
分析:先对函数f(x)进行求导,令导函数等于0找到有可能的极值点,然后根据导数的正负判断原函数的单调性进而确定函数f(x)的极值.
解答:解:∵f(x)=x6-2x3+1,∴f'(x)=6x5-6x2=6x2(x3-1)
令f'(x)=0,x=0或x=1
∵当x>1时,f'(x)>0,所以函数f(x)单调递增,
当x<1时,f'(x)<0,所以函数f(x)单调递减,
∴函数f(x)在x=1时取到极小值,无极大值.
故选C
令f'(x)=0,x=0或x=1
∵当x>1时,f'(x)>0,所以函数f(x)单调递增,
当x<1时,f'(x)<0,所以函数f(x)单调递减,
∴函数f(x)在x=1时取到极小值,无极大值.
故选C
点评:本题主要考查函数的极值与其导函数关系,即函数取到极值时导函数一定等于0,但导函数等于0时还要判断原函数的单调性才能确定原函数的极值点.
练习册系列答案
相关题目