题目内容
18.若向量|$\overrightarrow{a}$|=2sin15°与|$\overrightarrow{b}$|=4sin75°,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为30°,则$\overrightarrow{a}$•$\overrightarrow{b}$等于( )A. | $\sqrt{3}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | 2$\sqrt{3}$ | D. | $\frac{1}{2}$ |
分析 直接由已知结合向量数量积的运算求得答案.
解答 解:∵|$\overrightarrow{a}$|=2sin15°,|$\overrightarrow{b}$|=4sin75°,且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为30°,
则$\overrightarrow{a}$•$\overrightarrow{b}$=$|\overrightarrow{a}|•|\overrightarrow{b}|cos<\overrightarrow{a},\overrightarrow{b}>$=2sin15°×4sin75°×cos30°
=4×sin30°×cos30°=2sin60°=2×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$.
故选:A.
点评 本题考查平面向量的数量积运算,考查二倍角公式的应用,是基础的计算题.
练习册系列答案
相关题目
3.某地区2006年至2012年农村居民家庭人均纯收入y(单位:千元)的数据如下表:
(Ⅰ)求y关于t的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,分析2006年至2012年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2014年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:$\widehatb=\frac{{\sum_{i=1}^n{({t_i}-\overline t)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({t_i}-\overline t)}^2}}}}$.$\widehata=\overline y-\widehatb\overline t$.
年份 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 |
年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(Ⅱ)利用(Ⅰ)中的回归方程,分析2006年至2012年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2014年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:$\widehatb=\frac{{\sum_{i=1}^n{({t_i}-\overline t)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({t_i}-\overline t)}^2}}}}$.$\widehata=\overline y-\widehatb\overline t$.
7.下列事件中,是随机事件的是( )
①从10个玻璃杯(其中8个正品,2个次品)中任取3个,3个都是正品;
②同一门炮向同一个目标发射多发炮弹,其中50%的炮弹击中目标;
③某人给其朋友打电话,却忘记了朋友电话号码的最后一个数字,就随意在键盘上按了一个数字,恰巧是朋友的电话号码;
④异性电荷,相互吸引;
⑤某人购买体育彩票中一等奖.
①从10个玻璃杯(其中8个正品,2个次品)中任取3个,3个都是正品;
②同一门炮向同一个目标发射多发炮弹,其中50%的炮弹击中目标;
③某人给其朋友打电话,却忘记了朋友电话号码的最后一个数字,就随意在键盘上按了一个数字,恰巧是朋友的电话号码;
④异性电荷,相互吸引;
⑤某人购买体育彩票中一等奖.
A. | ②③④ | B. | ①③⑤ | C. | ①②③⑤ | D. | ②③⑤ |
8.已知向量$\overrightarrow{a}$=(x,2),$\overrightarrow{b}$=(2,x),则“x=2”是“$\overrightarrow{a}$∥$\overrightarrow{b}$”的( )
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |