ÌâÄ¿ÄÚÈÝ

10£®¶¯Ô²GÓëÔ²O1£ºx2+y2+2x=0ÍâÇУ¬Í¬Ê±ÓëÔ²O2£ºx2+y2-2x-8=0ÄÚÇУ¬É趯ԲԲÐÄGµÄ¹ì¼£Îª¦££®
£¨1£©ÇóÇúÏߦ£µÄ·½³Ì£»
£¨2£©Ö±Ïßx=t£¨t£¾0£©ÓëÇúÏߦ£ÏཻÓÚ²»Í¬µÄÁ½µãM£¬N£¬ÒÔMNΪֱ¾¶×÷Ô²C£¬ÈôÔ²CÓëyÖáÏཻÓÚÁ½µãP£¬Q£¬Çó¡÷PQCÃæ»ýµÄ×î´óÖµ£»
£¨3£©ÒÑÖªA1£¨-2£¬0£©£¬A2£¨2£¬0£©£¬Ö±Ïßl£ºy=kx+mÓëÇúÏߦ£ÏཻÓÚA£¬BÁ½µã£¨A£¬B¾ù²»ÓëA1£¬A2Öغϣ©£¬ÇÒÒÔABΪֱ¾¶µÄÔ²¹ýµãA2£¬ÇóÖ¤£ºÖ±Ïßl¹ý¶¨µã£¬²¢Çó³ö¸Ãµã×ø±ê£®

·ÖÎö £¨1£©ÇóµÃÔ²O1£¬Ô²O2µÄÔ²ÐÄ¡¢°ë¾¶£¬ÓÉÁ½Ô²ÏàÇеÄÌõ¼þ£¬½áºÏÍÖÔ²µÄ¶¨Ò壬¿ÉµÃ¶¯Ô²Ô²ÐÄGµÄ¹ì¼£·½³Ì£»
£¨2£©ÉèÔ²ÐÄΪC£¨t£¬0£©£¨0£¼t£¼2£©£®ÇóµÃÔ²CµÄ°ë¾¶£¬ÏÒ³¤PQ£¬ÓÉÈý½ÇÐεÄÃæ»ý¹«Ê½£¬»¯¼òÔËÓûù±¾²»µÈʽ£¬¼´¿ÉµÃµ½×î´óÖµ£»
£¨3£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÏûÈ¥y£¬ÔËÓÃΤ´ï¶¨Àí£¬½áºÏÖ±¾¶Ëù¶ÔµÄÔ²ÖܽÇΪֱ½Ç£¬ÔËÓô¹Ö±µÄÌõ¼þ£¬»¯¼òÕûÀí£¬µÃµ½m£¬kµÄ¹Øϵ£¬½ø¶øµÃµ½Ö±Ïߺã¹ýµÄ¶¨µã£®

½â´ð ½â£º£¨1£©Ô²O1£ºx2+y2+2x=0µÄÔ²ÐÄΪ£¨-1£¬0£©£¬°ë¾¶Îª1£¬
Ô²O2£ºx2+y2-2x-8=0Ϊ£¨1£¬0£©£¬°ë¾¶Îª3£¬
ÉèÔ²GµÄ°ë¾¶Îªr£¬ÒÀÌâÒâµÃ£º|GO1|=r+1£¬|GO2|=3-r£¬
ËùÒÔ|GO1|+|GO2|=4£¾|O1O2|=2£¬
ËùÒÔGµã¹ì¼£ÊÇÒÔO1£¬O2Ϊ½¹µãµÄÍÖÔ²£¬
¼´ÓÐa=2£¬c=1£¬b=$\sqrt{3}$£¬
ËùÒÔÇúÏߦ£µÄ·½³ÌÊÇ$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1£»
£¨2£©ÒÀÌâÒ⣬ԲÐÄΪC£¨t£¬0£©£¨0£¼t£¼2£©£®
ÓÉ$\left\{\begin{array}{l}{x=t}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$ µÃy2=$\frac{12-3{t}^{2}}{4}$£®
¡àÔ²CµÄ°ë¾¶Îªr=$\frac{\sqrt{12-3{t}^{2}}}{2}$£®
¡ßÔ²CÓëyÖáÏཻÓÚ²»Í¬µÄÁ½µãP£¬Q£¬ÇÒÔ²ÐÄCµ½yÖáµÄ¾àÀëd=t£¬
¡à0£¼t£¼$\frac{\sqrt{12-3{t}^{2}}}{2}$£¬¼´0£¼t£¼$\frac{2\sqrt{21}}{7}$£®
¡àÏÒ³¤|PQ|=2$\sqrt{{r}^{2}-{d}^{2}}$=$\sqrt{12-7{t}^{2}}$
¡à¡÷PQCµÄÃæ»ýS=$\frac{1}{2}$t$\sqrt{12-7{t}^{2}}$=$\frac{1}{2\sqrt{7}}$£¨$\sqrt{7}$t£©$\sqrt{12-7{t}^{2}}$¡Ü$\frac{1}{2\sqrt{7}}$•$\frac{7{t}^{2}+12-7{t}^{2}}{2}$=$\frac{3\sqrt{7}}{7}$£¬
¼´ÓÐS=$\frac{1}{2}$t$\sqrt{12-7{t}^{2}}$=$\frac{\sqrt{5}}{2}$£¬
µ±ÇÒ½öµ±$\sqrt{7}$t=$\sqrt{12-7{t}^{2}}$¼´t=$\frac{\sqrt{42}}{7}$ʱ£¬µÈºÅ³ÉÁ¢£¬
ËùÒÔ¡÷PQCÃæ»ýµÄ×î´óÖµÊÇ$\frac{3\sqrt{7}}{7}$£»
£¨3£©Ö¤Ã÷£ºÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÓÉ$\left\{\begin{array}{l}{y=kx+m}\\{3{x}^{2}+4{y}^{2}=12}\end{array}\right.$¿ÉµÃ£¨3+4k2£©x2+8mkx+4£¨m2-3£©=0£¬
¡÷=64m2k2-16£¨3+4k2£©£¨m2-3£©£¾0£¬¼´Îª3+4k2-m2£¾0£¬
x1+x2=-$\frac{8mk}{3+4{k}^{2}}$£¬x1x2=$\frac{4£¨{m}^{2}-3£©}{3+4{k}^{2}}$£¬
y1y2=£¨kx1+m£©£¨kx2+m£©=k2x1x2+mk£¨x1+x2£©+m2=$\frac{3£¨{m}^{2}-4{k}^{2}£©}{3+4{k}^{2}}$£¬
ÒÔABΪֱ¾¶µÄÔ²¹ýÍÖÔ²µÄÓÒ¶¥µãA2£¨2£¬0£©£¬
ÓÉ${k}_{A{A}_{2}}$•${k}_{B{A}_{2}}$=-1£¬¼´ÓÐ$\frac{{y}_{1}}{{x}_{1}-2}$•$\frac{{y}_{2}}{{x}_{2}-2}$=-1£¬
¼´Îªy1y2+x1x2-2£¨x1+x2£©+4=0£¬
¼´$\frac{3£¨{m}^{2}-4{k}^{2}£©}{3+4{k}^{2}}$+$\frac{4£¨{m}^{2}-3£©}{3+4{k}^{2}}$+$\frac{16mk}{3+4{k}^{2}}$+4=0£¬
»¯¼òµÃ7m2+16mk+4k2=0£¬
½âµÃm1=-2k£¬m2=-$\frac{2k}{7}$£¬ÇÒÂú×ã3+4k2-m2£¾0£®
µ±m=-2kʱ£¬l£ºy=k£¨x-2£©£¬Ö±Ïß¹ý¶¨µã£¨2£¬0£©ÓëÒÑ֪ì¶Ü£»
µ±m=-$\frac{2k}{7}$ʱ£¬l£ºy=k£¨x-$\frac{2}{7}$£©£¬Ö±Ïß¹ý¶¨µã£¨$\frac{2}{7}$£¬0£©£¬
×ÛÉÏ¿ÉÖª£¬Ö±Ïßl¹ý¶¨µã£¬¶¨µã×ø±êΪ£¨$\frac{2}{7}$£¬0£©£®

µãÆÀ ±¾Ì⿼²éÖ±ÏߺÍÔ²µÄλÖùØϵ£¬Ô²ºÍÔ²µÄλÖùØϵ£¬¿¼²éÏÒ³¤¹«Ê½ºÍÏàÇеÄÌõ¼þ£¬Í¬Ê±¿¼²éÍÖÔ²µÄ¶¨Òå¡¢·½³ÌºÍÐÔÖÊ£¬Ö±Ïߺã¹ý¶¨µãµÄÇ󷨣¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø