题目内容
已知函数 (1)若,求的值;(2)若对任意,恒成立,求实数的取值范围。
(1)当时,当时,,由条件可知,即,解得,(2)当时,,即,,补缺 故的取值范围是
解析
(本小题共12分)已知函数(其中为常量且)的图像经过点.(1)试求的值;(2)若不等式在时恒成立,求实数的取值范围.
.(12分)已知函数的定义域为,且同时满足:(Ⅰ)对任意,总有;(Ⅱ);(Ⅲ)若,则有(1)试求的值;(2)试求函数的最大值;(3)试证明:当时,。
(本小题满分12分)已知p:方程x2+mx+1=0有两个不等的负实根,q:方程4x2+4(m-2)x+1=0无实根。若p或q为真,p且q为假。求实数m的取值范围。
如图,某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(Rt∆FHE,H是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上.已知AB=20米,AD=10米,记∠BHE=θ.(1)试将污水净化管道的长度L表示为θ的函数,并写出定义域;(2)若sinθ+cosθ=,求此时管道的长度L;(3)问:当θ取何值时,污水净化效果最好?并求出此时管道的长度.
若定义在上的奇函数满足当时,.(1)求在上的解析式;(2)判断在上的单调性,并给予证明;(3)当为何值时,关于方程在上有实数解?
(本题满分12分)已知函数,,其中,设(1)判断的奇偶性,并说明理由(2)若,求使成立的x的集合
(13分)已知函数.(1)若f(x)关于原点对称,求a的值;(2)在(1)下,解关于x的不等式.
某企业甲将经营状态良好的某种消费品专卖店以58万元的优惠价转让给企业乙,约定乙用经营该店的利润偿还转让费(不计息).已知经营该店的固定成本为6.8万元/月,该消费品的进价为16元/件,月销量q(万件)与售价p(元/件)的关系如图.(1)写出销量q与售价p的函数关系式;(2)当售价p定为多少时,月利润最多?(3)企业乙最早可望在经营该专卖店几个月后还清转让费?