题目内容

(本小题满分12分)

已知数列{}满足,且点在函数的图象上,其中=1,2,3,….

(Ⅰ)证明:数列{lg(1+)}是等比数列;

(Ⅱ)设=(1+)(1+)…(1+),求及数列{}的通项.

 

【答案】

(Ⅰ)证明见解析;

(Ⅱ)由(Ⅰ)知lg(+1)=2n-1lg(1+)

=2n-1lg3=lg.∴+1=. 则 = -1     

=(1+)(1+)…(1+)=···…·   

==.∴=,=-1.

【解析】(I)紧扣等比数列的定义进行证明即可.先由由于(,)在函数的图象上,

可得,从而可得,,从而得到证明.

(II)求出,然后可知然后再利用等比数列前n项和公式求解.

(Ⅰ)证明: 由于(,)在函数的图象上,

=+2,∴+1=.                      …………4分

=2,∴+1﹥1,∴lg(+1)=2lg(+1).

∴数列{lg(+1)}是公比为2的等比数列.                 …………6分

(Ⅱ)解:  由(Ⅰ)知lg(+1)=2n-1lg(1+)

=2n-1lg3=lg.∴+1=. 则 = -1              …………9分

=(1+)(1+)…(1+)=···…·   

==.∴=,=-1.                       …………12分

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网