题目内容
已知f(x)为定义在R上的偶函数,当x≥0时,有f(x+2)=-f(x),且当x∈[0,2)时,f(x)=log2(x+1),则f(2013)+f(-2014)的值为
1
1
.分析:由f(x+2)=-f(x)求出函数的周期,由当x∈[0,2)时,f(x)=log2(x+1)求出f(0)及f(1)的值,然后利用周期性求解f(2013)+f(-2014)的值.
解答:解:由f(x+2)=-f(x),得f(x+4)=f(x),
∴f(x)在x≥0时是以4为周期的周期函数.
则f(2013)+f(-2014)
=f(503×4+1)+f(2014)
=f(1)+f(2)
∵x∈[0,2)时,f(x)=log2(x+1),
∴f(1)=log2(1+1)=1.
f(0)=log2(0+1)=0.
由f(x+2)=-f(x),得f(2)=-f(0)=0.
∴f(2013)+f(-2014)=1.
故答案为1.
∴f(x)在x≥0时是以4为周期的周期函数.
则f(2013)+f(-2014)
=f(503×4+1)+f(2014)
=f(1)+f(2)
∵x∈[0,2)时,f(x)=log2(x+1),
∴f(1)=log2(1+1)=1.
f(0)=log2(0+1)=0.
由f(x+2)=-f(x),得f(2)=-f(0)=0.
∴f(2013)+f(-2014)=1.
故答案为1.
点评:本题考查了对数的运算性质,考查了函数的奇偶性,解答的关键是利用已知条件求出周期,是中档题.
练习册系列答案
相关题目
已知f(x)为定义在(-∞,+∞)上的可导函数,且f(x)<f′(x)对于x∈R恒成立,则( )
A、f(2)>e2f(0),f(2010)>e2010f(0) | B、f(2)<e2f(0),f(2010)>e2010f(0) | C、f(2)>e2f(0),f(2010)<e2010f(0) | D、f(2)<e2f(0),f(2010)<e2010f(0) |
已知f(x)为定义在R上的奇函数,当x≥0时,f(x)=x(1+x),则当x<0时,有( )
A、f(x)=-x(1+x) | B、f(x)=-x(1-x) | C、f(x)=x(1-x) | D、f(x)=x(x-1) |