题目内容

【题目】从某校高三年级中随机抽取100名学生,对其高校招生体检表中的视图情况进行统计,得到如图所示的频率分布直方图,已知从这100人中随机抽取1人,其视力在的概率为.

(1)求的值;

(2)若某大学专业的报考要求之一是视力在0.9以上,则对这100人中能报考专业的学生采用按视力分层抽样的方法抽取8人,调查他们对专业的了解程度,现从这8人中随机抽取3人进行是否有意向报考该大学专业的调查,记抽到的学生中视力在的人数为,求的分布列及数学期望.

【答案】(1),(2)见解析

【解析】分析:(1)先根据小长方形的面积等于对应区间概率得b,再根据所有小长方形面积和为1求区间[0.9,1.1]概率,除以组距即得a,(2)先根据分层抽样得确定视力在的人数为3,再确定随机变量的取法,分别利用组合数求对应概率,列表可得分布列,最后根据数学期望公式求期望.

详解:

解:(1)

(2)的可能取值为0,1,2,3,

概率为:

,所以其分布列如下:

0

1

2

3

.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网