题目内容

已知长方体ABCD-A′B′C′D′,AB=2,AA′=1,直线BD与平面AA′B′B所成角为30°,E为A′B′的中点.
(1)求异面直线AC与BE所成的角;
(2)求A点到平面BDE的距离.
分析:(1)取C′D′在中点O,连接EO,OC,AC,则∠OCA(或其补角)为异面直线AC与BE所成的角,利用余弦定理可求;
(2)利用VA-BDE=VD-ABE,可求A点到平面BDE的距离.
解答:解:(1)如图,取C′D′在中点O,连接EO,OC,AC,
∵E为A′B′的中点,
∴四边形EOCB是平行四边形
∴EB∥OC
∴∠OCA(或其补角)为异面直线AC与BE所成的角
∵DA⊥平面AA′B′B,直线BD与平面AA′B′B所成角为30°,
∴∠DBA=30°
∵AB=2,∴AD=
2
3
3
,DB=
4
3
3

△AOC中,OC=
2
,AC=
4
3
3
,AO=
3

∴cos∠OCA=
(
4
3
3
)2+2-3
2•
4
3
3
2
=
13
6
48

∴∠COA=arccos
13
6
48

(2)设A点到平面BDE的距离为h,则
在△BDE中,BE=
2
,DB=
4
3
3
,DE=
10
3

∴DB2=BE2+DE2
∴S△BDE=
1
2
×
2
×
10
3
=
60
6

S△AEB=
1
2
×2×1=1
,VA-BDE=VD-ABE
1
3
×
60
6
×h=
1
3
×1×
2
3
3

∴h=
2
5
5
点评:本题考查异面直线所成角,考查点到面的距离的计算,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网