ÌâÄ¿ÄÚÈÝ
ÓÐÒÔÏÂËĸöÃüÌ⣺¢ÙÈôÃüÌâp£º?x¡ÊR£¬x£¾sinx£¬Ôò?p£º?x¡ÊR£¬x£¼sinx
¢Úº¯Êýy=sin£¨x-
¦Ð |
2 |
¢Û°Ñº¯Êýy=3sin£¨2x+
¦Ð |
3 |
¦Ð |
6 |
¦Ð |
6 |
¢ÜÈôº¯Êýf£¨x£©=-cos2x+
1 |
2 |
¦Ð |
3 |
¢ÝÉèÔ²x2+y2-4x-2y-8=0ÉÏÓйØÓÚÖ±Ïßax+2by-2=0£¨a£¬b£¾0£©¶Ô³ÆµÄÁ½µã£¬Ôò
1 |
a |
2 |
b |
2 |
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ
·ÖÎö£ºÈôÃüÌâp£º?x¡ÊR£¬x£¾sinx£¬Ôò?p£º?x¡ÊR£¬x¡Üsinx£»º¯Êýy=sin£¨x-
)ÔÚ[0£¬¦Ð=-cosx£¬ÔÚRÉÏÊÇżº¯Êý£»°Ñº¯Êýy=3sin£¨2x+
)µÄͼÏóÏòÓÒƽÒÆ
×óƽÒÆ
µÃµ½y=3sin£¨2x+
£©µÄͼÏó£»Èôº¯Êýf£¨x£©=-cos2x+
=-
cos2x£¨x¡ÊR£©£¬Ôòf£¨x£©ÊÇ×îСÕýÖÜÆÚΪ¦Õ=¦ÐµÄżº¯Êý£»Ô²µÄÔ²ÐÄÊÇ£¨2£¬1£©£¬°Ñ£¨2£¬1£©´úÈëÖ±Ïߣ¬µÃa+b=1£¬
+
=£¨
+
£©£¨a+b£©=3+
+
¡Ý3+2
£®
¦Ð |
2 |
¦Ð |
3 |
¦Ð |
6 |
¦Ð |
6 |
2¦Ð |
3 |
1 |
2 |
1 |
2 |
1 |
a |
2 |
b |
1 |
a |
2 |
b |
2a |
b |
b |
a |
2 |
½â´ð£º½â£º¢ÙÈôÃüÌâp£º?x¡ÊR£¬x£¾sinx£¬Ôò?p£º?x¡ÊR£¬x¡Üsinx£¬¹Ê¢Ù²»ÕýÈ·£®
¢Úº¯Êýy=sin£¨x-
)ÔÚ[0£¬¦Ð=-cosx£¬ÔÚRÉÏÊÇżº¯Êý£¬¹Ê¢Ú²»ÕýÈ·£®
¢Û°Ñº¯Êýy=3sin£¨2x+
)µÄͼÏóÏòÓÒƽÒÆ
×óƽÒÆ
µÃµ½y=3sin£¨2x+
£©µÄͼÏ󣬹ʢ۲»ÕýÈ·£®
¢ÜÈôº¯Êýf£¨x£©=-cos2x+
=-
cos2x£¨x¡ÊR£©£¬Ôòf£¨x£©ÊÇ×îСÕýÖÜÆÚΪ¦Õ=¦ÐµÄżº¯Êý£¬¹Ê¢Ü²»ÕýÈ·£®
¢ÝÔ²µÄÔ²ÐÄÊÇ£¨2£¬1£©
Ö±Ïßƽ·ÖÔ²µÄÖܳ¤£¬ËùÒÔÖ±Ïߺã¹ýÔ²ÐÄ£¨2£¬1£©
°Ñ£¨2£¬1£©´úÈëÖ±Ïߣ¬µÃa+b=1
+
=£¨
+
£©£¨a+b£©=3+
+
¡Ý3+2
£®
¹Ê¢Ý³ÉÁ¢£®
¹Ê´ð°¸Îª£º¢Ý£®
¢Úº¯Êýy=sin£¨x-
¦Ð |
2 |
¢Û°Ñº¯Êýy=3sin£¨2x+
¦Ð |
3 |
¦Ð |
6 |
¦Ð |
6 |
2¦Ð |
3 |
¢ÜÈôº¯Êýf£¨x£©=-cos2x+
1 |
2 |
1 |
2 |
¢ÝÔ²µÄÔ²ÐÄÊÇ£¨2£¬1£©
Ö±Ïßƽ·ÖÔ²µÄÖܳ¤£¬ËùÒÔÖ±Ïߺã¹ýÔ²ÐÄ£¨2£¬1£©
°Ñ£¨2£¬1£©´úÈëÖ±Ïߣ¬µÃa+b=1
1 |
a |
2 |
b |
1 |
a |
2 |
b |
2a |
b |
b |
a |
2 |
¹Ê¢Ý³ÉÁ¢£®
¹Ê´ð°¸Îª£º¢Ý£®
µãÆÀ£º±¾Ì⿼²éÃüÌâµÄÕæ¼ÙÅжϺÍÓ¦Ó㬽âÌâʱҪעÒâÃüÌâµÄ·ñ¶¨ÐÎʽ¡¢Èý½Çº¯Êý¡¢Ô²µÄÐÔÖÊ¡¢¾ùÖµ¶¨ÀíµÈ֪ʶµãµÄÁé»îÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿