题目内容

【题目】设函数f'(x)是函数f(x)(x∈R)的导函数,f(0)=1,且 ,则4f(x)>f'(x)的解集为(
A.
B.
C.
D.

【答案】B
【解析】解:由 ,得3f(x)=f′(x)﹣3, ∴f′(x)=3f(x)+3,
令f(x)=aebx+c,
∵f(0)=1,∴a+c=1,
∵3f(x)=f′(x)﹣3,
∴3aebx+3c=abebx﹣3,
,解得a=2,b=3,c=﹣1.
∴f(x)=2e3x﹣1,
∵4f(x)>f'(x),
∴8e3x﹣4>6e3x
则e3x>2,即x>
∴4f(x)>f'(x)的解集为
故选:B.
【考点精析】根据题目的已知条件,利用利用导数研究函数的单调性的相关知识可以得到问题的答案,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网