题目内容

10.若直线3x+2y-2m-1=0与直线2x+4y-m=0的交点在第四象限,则实数m的取值范围是.
A.(-∞,-2)B.(-2,+∞)C.(-∞,-$\frac{2}{3}$)D.(-$\frac{2}{3}$,+∞)

分析 由两直线的方程,即可联立起来求出两直线的交点坐标,由交点所在的象限进而可判断出m的取值范围.

解答 解:联立两直线的方程得$\left\{\begin{array}{l}{3x+2y-2m-1=0}\\{2x+4y-m=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{3m+2}{4}}\\{y=\frac{-m-2}{8}}\end{array}\right.$,
∵交点在第四象限,
∴$\left\{\begin{array}{l}{\frac{3m+2}{4}>0}\\{\frac{-m-2}{8}<0}\end{array}\right.$,
解得m>-$\frac{2}{3}$,
故选:D.

点评 本题主要考查了函数图象交点坐标的求法,充分理解一次函数与方程组的联系是解答此类问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网