题目内容
【题目】已知是自然对数的底数,函数与的定义域都是.
(1)求函数在点处的切线方程;
(2)判断函数零点个数;
(3)用表示的最小值,设,,若函数在上为增函数,求实数的取值范围.
【答案】(1);(2)函数只有一个零点;(3).
【解析】
(1)先求导数,代入得为直线的斜率,利用点斜式可求直线方程;
(2)先求导数,结合导数的符号,判定零点的个数;
(3)为增函数,转化为恒成立,然后利用分离参数法求解.
(1)∵,∴切线的斜率,.
∴函数在点处的切线方程为.
(2)∵,,∴,,,
∴存在零点,且.∵,
∴当时,;当时,由得
.∴在上是减函数.
∴若,,,则.∴函数只有一个零点,且.
(3)解:,故,
∵函数只有一个零点,∴,即.∴.
∴在为增函数在,恒成立.
当时,即在区间上恒成立.
设,只需,
,在单调递减,在单调递增.
的最小值,.
当时,,由上述得,则在恒成立.
综上述,实数的取值范围是.
练习册系列答案
相关题目