题目内容

7.在△ABC中,A=$\frac{π}{3}$,BC=3,求△ABC的周长的取值范围.

分析 由正弦定理可得$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}$=$\frac{3}{sin\frac{π}{3}}$.化为a+b+c=3+$2\sqrt{3}(sinB+sinC)$=$2\sqrt{3}sin(C+\frac{π}{3})$+3,再利用三角函数的单调性即可得出.

解答 解:由正弦定理可得$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}$=$\frac{3}{sin\frac{π}{3}}$=2$\sqrt{3}$.
∴$\frac{a+b+c}{\frac{\sqrt{3}}{2}+sinB+sinC}=2\sqrt{3}$,
∴a+b+c=3+$2\sqrt{3}(sinB+sinC)$
=$3+2\sqrt{3}[sin(\frac{2π}{3}-C)+sinC]$
=$2\sqrt{3}sin(C+\frac{π}{3})$+3,
∵$0<C<\frac{2π}{3}$,
∴$\frac{π}{3}<C+\frac{π}{3}<π$,
∴$0<sin(C+\frac{π}{3})≤1$,
∴△ABC的周长∈$(3,2\sqrt{3}+3]$.

点评 本题考查了正弦定理、两角和差的正弦公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网