题目内容
如图:在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,点M,N分别为BC,PA的中点,且PA=AB=2.
(I)证明:BC⊥平面AMN;
(II)求三棱锥N-AMC的体积;
(III)在线段PD上是否存在一点E,使得NM∥平面ACE;若存在,求出PE的长;若不存在,说明理由.
(I)证明:BC⊥平面AMN;
(II)求三棱锥N-AMC的体积;
(III)在线段PD上是否存在一点E,使得NM∥平面ACE;若存在,求出PE的长;若不存在,说明理由.
(Ⅰ)证明:∵ABCD为菱形,
∴AB=BC
又∠ABC=60°,
∴AB=BC=AC,
又M为BC中点,∴BC⊥AM
而PA⊥平面ABCD,BC?平面ABCD,∴PA⊥BC
又PA∩AM=A,∴BC⊥平面AMN
(II)∵S△AMC=
AM•CM=
×
×1=
又PA⊥底面ABCD,PA=2,∴AN=1
∴三棱锥N-AMC的体积V=
S△AMC•AN
=
×
×1=
(III)存在点E,
取PD中点E,连接NE,EC,AE,
∵N,E分别为PA,PD中点,
∴NE
AD
又在菱形ABCD中,CM
AD
∴NE
MC,即MCEN是平行四边形
∴NM∥EC,
又EC?平面ACE,NM?平面ACE
∴MN∥平面ACE,
即在PD上存在一点E,使得NM∥平面ACE,
此时PE=
PD=
.
∴AB=BC
又∠ABC=60°,
∴AB=BC=AC,
又M为BC中点,∴BC⊥AM
而PA⊥平面ABCD,BC?平面ABCD,∴PA⊥BC
又PA∩AM=A,∴BC⊥平面AMN
(II)∵S△AMC=
1 |
2 |
1 |
2 |
3 |
| ||
2 |
又PA⊥底面ABCD,PA=2,∴AN=1
∴三棱锥N-AMC的体积V=
1 |
3 |
=
1 |
3 |
| ||
2 |
| ||
6 |
(III)存在点E,
取PD中点E,连接NE,EC,AE,
∵N,E分别为PA,PD中点,
∴NE
| ||
. |
1 |
2 |
又在菱形ABCD中,CM
| ||
. |
1 |
2 |
∴NE
| ||
. |
∴NM∥EC,
又EC?平面ACE,NM?平面ACE
∴MN∥平面ACE,
即在PD上存在一点E,使得NM∥平面ACE,
此时PE=
1 |
2 |
2 |
练习册系列答案
相关题目