ÌâÄ¿ÄÚÈÝ
1£®ÒÑÖª{an}£¬{bn}£¬{cn}¶¼ÊǸ÷ÏΪÁãµÄÊýÁУ¬ÇÒÂú×ãa1b1+a2b2+¡+anbn=cnSn£¬n¡ÊN*£¬ÆäÖÐSnÊÇÊýÁÐ{an}µÄÇ°nÏîºÍ£¬{cn}Êǹ«²îΪd£¨d¡Ù0£©µÄµÈ²îÊýÁУ®£¨1£©ÈôÊýÁÐ{an}Êdz£ÊýÁУ¬d=2£¬c2=3£¬ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨2£©Èôan=¦Ën£¨¦ËÊDz»ÎªÁãµÄ³£Êý£©£¬ÇóÖ¤£ºÊýÁÐ{bn}ÊǵȲîÊýÁУ»
£¨3£©Èôa1=c1=d=k£¨kΪ³£Êý£¬k¡ÊN*£©£¬bn=cn+k£¨n¡Ý2£¬n¡ÊN*£©£¬ÇóÖ¤£º¶ÔÈÎÒâµÄn¡Ý2£¬n¡ÊN*£¬ÊýÁÐ$\{\frac{b_n}{a_n}\}$µ¥µ÷µÝ¼õ£®
·ÖÎö £¨1£©¸ù¾ÝÌâÒ⣬ÓÉSncn=a1b1+a2b2+¡+anbn£¬µÃn£¨2n-1£©=b1+b2+¡+bn£¬µÝÍƵõ±n¡Ý2ʱ£¬£¨n-1£©£¨2n-3£©=b1+b2+¡+bn-1£¬Á½Ê½Ïà¼õ¼´¿É£»
£¨2£©ÓÉa1b1+a2b2+¡+anbn=cnSn£¬µÝÍƵõ±n¡Ý2ʱ£¬Sn-1cn-1=a1b1+a2b2+¡+an-1bn-1£¬Á½Ê½Ïà¼õ¡¢¼ÆËã¿ÉµÃ$\frac{£¨n-1£©}{2}d+{c_n}={b_n}$£¬´Ó¶ø¿ÉµÃµ±n¡Ý3ʱ£¬$\frac{£¨n-2£©}{2}d+{c_{n-1}}={b_{n-1}}$£¬ÔÙ´ÎÁ½Ê½Ïà¼õµÃ${b_n}-{b_{n-1}}=\frac{3}{2}d$£¨n¡Ý3£©¼´¿É½áÂÛ£»
£¨3£©ÓÉ£¨2£©µÃµ±n¡Ý2ʱ£¬ÓÐSn-1d=an£¨bn-cn£©£¬»¯¼òµÃSn=£¨k+1£©an£¬´Ó¶øµ±n¡Ý3ʱ£¬Sn-1=£¨k+1£©an-1£¬Á½Ê½Ïà¼õµÃ${a_n}=\frac{k+1}{k}{a_{n-1}}$£¬¹Êµ±n¡Ý2ʱ£¬${a_n}={a_2}{£¨\frac{k+1}{k}£©^{n-2}}$£¬bn=k£¨n+k£©£¬ÓÉa2=1£¬Öª${a_n}={£¨\frac{k+1}{k}£©^{n-2}}$£¬Áîdn=$\frac{b_n}{a_n}$£¬Ôò$\frac{{d}_{n+1}}{{d}_{n}}$=$\frac{£¨n+k+1£©k}{£¨n+k£©£¨k+1£©}$£¼1£¬´Ó¶ø¿ÉµÃ½áÂÛ£®
½â´ð ½â£º£¨1£©¡ßd=2£¬c2=3£¬¡àcn=2n-1£¬
¡ßÊýÁÐ{an}ÊǸ÷ÏΪÁãµÄ³£ÊýÁУ¬
¡àa1=a2=¡=an£¬Sn=na1£¬
ÔòÓÉSncn=a1b1+a2b2+¡+anbn¼°cn=2n-1£¬µÃn£¨2n-1£©=b1+b2+¡+bn£¬
µ±n¡Ý2ʱ£¬£¨n-1£©£¨2n-3£©=b1+b2+¡+bn-1£¬Á½Ê½Ïà¼õµÃbn=4n-3£¬
µ±n=1ʱ£¬b1=1£¬Ò²Âú×ãbn=4n-3£¬
¹Ê${b_n}=4n-3£¨n¡Ê{N^*}£©$£®
£¨2£©ÒòΪa1b1+a2b2+¡+anbn=cnSn£¬
µ±n¡Ý2ʱ£¬Sn-1cn-1=a1b1+a2b2+¡+an-1bn-1£¬
Á½Ê½Ïà¼õµÃSncn-Sn-1cn-1=anbn£¬
¼´£¨Sn-1+an£©cn-Sn-1cn-1=anbn£¬Sn-1£¨cn-cn-1£©+ancn=anbn£¬
¼´Sn-1d+¦Ëncn=¦Ënbn£¬
ÓÖ${S_{n-1}}=\frac{¦Ë+¦Ë£¨n-1£©}{2}£¨n-1£©=\frac{¦Ën£¨n-1£©}{2}$£¬
ËùÒÔ$\frac{¦Ën£¨n-1£©}{2}d+¦Ën{c_n}=¦Ën{b_n}$£¬
¼´$\frac{£¨n-1£©}{2}d+{c_n}={b_n}$£¬
ËùÒÔµ±n¡Ý3ʱ£¬$\frac{£¨n-2£©}{2}d+{c_{n-1}}={b_{n-1}}$£¬
Á½Ê½Ïà¼õµÃ${b_n}-{b_{n-1}}=\frac{3}{2}d$£¨n¡Ý3£©£¬
ËùÒÔÊýÁÐ{bn}´ÓµÚ¶þÏîÆðÊǹ«²îΪ$\frac{3}{2}d$µÈ²îÊýÁУ»
ÓÖµ±n=1ʱ£¬ÓÉS1c1=a1b1µÃc1=b1£¬
µ±n=2ʱ£¬ÓÉ${b_2}=\frac{£¨2-1£©}{2}d+{c_2}=\frac{1}{2}d+£¨{c_1}+d£©={b_1}+\frac{3}{2}d$µÃ${b_2}-{b_1}=\frac{3}{2}d$£¬
¹ÊÊýÁÐ{bn}Êǹ«²îΪ$\frac{3}{2}d$µÄµÈ²îÊýÁУ®
£¨3£©ÓÉ£¨2£©µÃµ±n¡Ý2ʱ£¬Sn-1£¨cn-cn-1£©+ancn=anbn£¬¼´Sn-1d=an£¨bn-cn£©£¬
ÒòΪbn=cn+k£¬ËùÒÔbn=cn+kd£¬¼´bn-cn=kd£¬
ËùÒÔSn-1d=an•kd£¬¼´Sn-1=kan£¬
ËùÒÔSn=Sn-1+an=£¨k+1£©an£¬
µ±n¡Ý3ʱ£¬Sn-1=£¨k+1£©an-1£¬Á½Ê½Ïà¼õµÃ an=£¨k+1£©an-£¨k+1£©an-1£¬
¼´${a_n}=\frac{k+1}{k}{a_{n-1}}$£¬¹Ê´ÓµÚ¶þÏîÆðÊýÁÐ{an}ÊǵȱÈÊýÁУ¬
ËùÒÔµ±n¡Ý2ʱ£¬${a_n}={a_2}{£¨\frac{k+1}{k}£©^{n-2}}$£¬
${b_n}={c_{n+k}}={c_n}+kd={c_1}+£¨n-1£©k+{k^2}=k+£¨n-1£©k+{k^2}=k£¨n+k£©$£¬
ÁíÍâÓÉÒÑÖªÌõ¼þµÃ£¨a1+a2£©c2=a1b1+a2b2£¬ÓÖc2=2k£¬b1=k£¬b2=k£¨2+k£©£¬
ËùÒÔa2=1£¬Òò¶ø${a_n}={£¨\frac{k+1}{k}£©^{n-2}}$£¬
Áîdn=$\frac{b_n}{a_n}$£¬Ôò$\frac{{{d_{n+1}}}}{d_n}=\frac{{{b_{n+1}}{a_n}}}{{{a_{n+1}}{b_n}}}$=$\frac{£¨n+k+1£©k}{£¨n+k£©£¨k+1£©}$£¬
ÒòΪ£¨n+k+1£©k-£¨n+k£©£¨k+1£©=-n£¼0£¬
ËùÒÔ$\frac{{{d_{n+1}}}}{d_n}£¼1$£¬ËùÒÔ¶ÔÈÎÒâµÄn¡Ý2£¬n¡ÊN*£¬ÊýÁÐ$\{\frac{b_n}{a_n}\}$µ¥µ÷µÝ¼õ£®
µãÆÀ ±¾Ì⿼²éÇóÊýÁеÄͨÏʽ¡¢µ¥µ÷ÐÔ¡¢µÝÍÆʽ¡¢¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
A£® | a=$\frac{bsinA}{cosB}$ | B£® | b=$\frac{asinA}{sinB}$ | C£® | c=acosB+bcosA | D£® | b=$\frac{csinC}{sinB}$ |
A£® | $\sqrt{5}$ | B£® | $\sqrt{3}$ | C£® | 2 | D£® | $\sqrt{2}$ |