题目内容

精英家教网如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点.
(Ⅰ)求证:AF∥平面BCE;
(Ⅱ)求证:平面BCE⊥平面CDE.
分析:(Ⅰ)取CE中点P,连接FP、BP,欲证AF∥平面BCE,根据直线与平面平行的判定定理可知只需证AF与平面平面BCE内一直线平行,而AF∥BP,AF?平面BCE,BP?平面BCE,满足定理条件;
(Ⅱ)欲证平面BCE⊥平面CDE,根据面面垂直的判定定理可知在平面BCE内一直线与平面CDE垂直,而根据题意可得BP⊥平面CDE,BP?平面BCE,满足定理条件.
解答:精英家教网证明:(Ⅰ)取CE中点P,连接FP、BP,
∵F为CD的中点,
∴FP∥DE,且FP=
1
2
DE

又AB∥DE,且AB=
1
2
DE

∴AB∥FP,且AB=FP,
∴ABPF为平行四边形,∴AF∥BP.(4分)
又∵AF?平面BCE,BP?平面BCE,
∴AF∥平面BCE(6分)

(Ⅱ)∵△ACD为正三角形,∴AF⊥CD
∵AB⊥平面ACD,DE∥AB
∴DE⊥平面ACD又AF?平面ACD
∴DE⊥AF
又AF⊥CD,CD∩DE=D
∴AF⊥平面CDE(10分)
又BP∥AF∴BP⊥平面CDE
又∵BP?平面BCE
∴平面BCE⊥平面CDE(12分)
点评:本小题主要考查空间中的线面关系,考查线面平行、面面垂直的判定,考查运算能力和推理论证能力,考查转化思想,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网