题目内容
【题目】对于函数,若存在实数对,使得等式对定义域中的任意都成立,则称函数是“型函数”.
(1)若函数是“型函数”,且,求出满足条件的实数对;
(2)已知函数.函数是“型函数”,对应的实数对为,当时,.若对任意时,都存在,使得,试求的取值范围.
【答案】(1); (2).
【解析】
(1)利用定义,直接判断求解即可.
(2)由题意得,g(1+x)g(1﹣x)=4,所以当时,,其中, 所以只需使当时,恒成立即可,即在上恒成立,若,显然不等式在上成立,若,分离参数m,分别求得不等式右边的函数的最值,取交集即可得到m的范围.
(1)由题意,若是“(a,b)型函数”,则,即,
代入得 ,所求实数对为.
(2)由题意得:的值域是值域的子集,易知在的值域为,
只需使当时,恒成立即可,,即,
而当时,, 故由题意可得,要使当时,都有,
只需使当时,恒成立即可,
即在上恒成立,
若,显然不等式在上成立,
若,则可将不等式转化为,
因此只需上述不等式组在上恒成立,显然,当时,不等式(1)成立,
令 在上单调递增,∴,
故要使不等式(2)恒成立,只需即可,综上所述,所求的取值范围是.
练习册系列答案
相关题目
【题目】某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:
(1)请将上表数据补充完整;函数的解析式为 (直接写出结果即可);
(2)根据表格中的数据作出一个周期的图象;
(3)求函数在区间上的最大值和最小值.