ÌâÄ¿ÄÚÈÝ
5£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÔÚxÖáÉϵĶ¥µã·Ö±ðΪA£¬B£¬ÇÒÒÔ×ø±êÔµãΪԲÐÄ£¬ÒÔÍÖÔ²¶ÌÖ᳤Ϊֱ¾¶µÄÔ²¾¹ýÍÖÔ²µÄ½¹µã£¬PΪÍÖÔ²Éϲ»Í¬ÓÚA¡¢BµÄÒ»¶¯µã£®£¨1£©ÈôkAP¡ÁkBP=-$\frac{1}{2}$£¬ÇÒ¶ÌÖ᳤Ϊ2£¬ÇóÍÖÔ²·½³Ì£¿
£¨2£©Á¬½áPÓëÔµãO½»ÍÖÔ²ÓÚQ£¬¹ýQ×÷QN¡ÍPQ½»ÍÖÔ²ÓÚN£¬QM¡ÍxÖáÓÚM£¬ÇóÖ¤£ºP¡¢N¡¢MÈýµã¹²Ïߣ®
·ÖÎö £¨1£©¸ù¾ÝkAP¡ÁkBP=-$\frac{1}{2}$£¬ÇÒ¶ÌÖ᳤Ϊ2£¬½¨Á¢·½³Ì¹ØϵÇó³öa£¬b¼´¿ÉÇóÍÖÔ²·½³Ì£®
£¨2£©Éè³öP£®M£¬N£¬QµÄ×ø±êÇó³ö¶ÔÓ¦µÄбÂÊ£¬ÀûÓÃбÂÊÏàµÈ¼´¿ÉÖ¤Ã÷Èýµã¹Øϵ£®
½â´ð ½â£º£¨1£©ÉèµãP£¨x0£¬y0£©£¬
¡ßb=c£¬¡àa=$\sqrt{2}$b£¬
ÔòkAP¡ÁkBP=$\frac{{y}_{0}-0}{{x}_{0}-a}•\frac{{y}_{0}-0}{{x}_{0}+a}$=$\frac{{{y}_{0}}^{2}}{{{x}_{0}}^{2}-{a}^{2}}=\frac{{{y}_{0}}^{2}}{{{x}_{0}}^{2}-2{b}^{2}}=-\frac{1}{2}$£¬
¡à$\frac{{{x}_{0}}^{2}}{2{b}^{2}}+\frac{{{y}_{0}}^{2}}{{b}^{2}}=1$£¬
¡àb=1£¬a=$\sqrt{2}$£¬
¡àÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{2}+{y}^{2}=1$£®
£¨2£©ÉèP£¨x0£¬y0£©£¬N£¨x1£¬y1£©£¬
ÔòQ£¨-x0£¬-y0£©£¬M£¨-x0£¬0£©£¬
Ôò$\left\{\begin{array}{l}{\frac{{{x}_{0}}^{2}}{2}+{{y}_{0}}^{2}=1}\\{\frac{{{x}_{1}}^{2}}{2}+{{y}_{1}}^{2}=1}\end{array}\right.$£¬Á½Ê½×÷²îµÃ$\frac{{y}_{0}+{y}_{1}}{{x}_{0}+{x}_{1}}=-\frac{{x}_{0}-{x}_{1}}{2£¨{y}_{0}-{y}_{1}£©}$ ¢Ù£¬
¡ßQN¡ÍPQ£¬
¡àkQN¡ÁkPQ=$\frac{{y}_{0}+{y}_{1}}{{x}_{0}+{x}_{1}}$•$\frac{{y}_{0}}{{x}_{0}}$=-1£¬¢Ú£¬
¢Ù´úÈë¢ÚµÃ$\frac{{y}_{1}}{{x}_{0}+{x}_{1}}=\frac{{y}_{0}}{2{x}_{0}}$£¬
¼´kMN=kPM£¬¼´P¡¢N¡¢MÈýµã¹²Ïߣ®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÍÖÔ²·½³ÌµÄÇó½âÒÔ¼°Èýµã¹ØϵµÄÖ¤Ã÷£¬ÀûÓÃбÂÊÖ®¼äµÄ¹ØϵÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®
A£® | £¨0£¬3£© | B£® | £¨1£¬1£© | C£® | £¨2£¬4£© | D£® | £¨2£¬5£© |
A£® | £¨-$\frac{1}{4}$£¬$\frac{1}{4}$£© | B£® | £¨-¡Þ£¬-$\frac{1}{4}$£©¡È£¨$\frac{1}{4}$£¬+¡Þ£© | C£® | £¨-¡Þ£¬-$\frac{1}{8}$£©¡È£¨$\frac{1}{8}$£¬+¡Þ£© | D£® | £¨-$\frac{1}{8}$£¬0£©¡È£¨0£¬$\frac{1}{8}$£© |
A£® | $\frac{5}{9}$ | B£® | $\frac{7}{12}$ | C£® | $\frac{5}{12}$ | D£® | $\frac{7}{10}$ |