题目内容

15.△ABC的两个顶点为A(-4,0),B(4,0),△ABC周长为18,则C点轨迹为(  )
A.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1 (y≠0)B.$\frac{{y}^{2}}{25}$+$\frac{{x}^{2}}{9}$=1(y≠0)
C.$\frac{{y}^{2}}{16}$+$\frac{{x}^{2}}{9}$=1 (y≠0)D.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1(y≠0)

分析 根据三角形的周长和定点,得到点A到两个定点的距离之和等于定值,得到点A的轨迹是椭圆,椭圆的焦点在y轴上,写出椭圆的方程,去掉不合题意的点.

解答 解:∵△ABC的两顶点A(-4,0),B(4,0),周长为18,
∴AB=8,BC+AC=10,
∵10>8,∴点C到两个定点的距离之和等于定值,点C满足椭圆的定义,
∴点C的轨迹是以A,B为焦点的椭圆,
∴2a=10,2c=8,∴b=3,
∴椭圆的标准方程是$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1(y≠0).
故选:D.

点评 本题考查轨迹方程的求法,注意椭圆的定义的应用是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网