题目内容
(2013•泰安一模)设等比数列{an}的前n项和为Sn,a4=a1-9,a5,a3,a4成等差数列.
(1)求数列{an}的通项公式,
(2)证明:对任意k∈N+,Sk+2,Sk,Sk+1成等差数列.
(1)求数列{an}的通项公式,
(2)证明:对任意k∈N+,Sk+2,Sk,Sk+1成等差数列.
分析:(1)由题意可建立
,解之可得
,进而可得通项公式;
(2)由(1)可求Sk,进而可得Sk+2,Sk+1,由等差中项的定义验证Sk+1+Sk+2=2Sk即可
|
|
(2)由(1)可求Sk,进而可得Sk+2,Sk+1,由等差中项的定义验证Sk+1+Sk+2=2Sk即可
解答:解:(1)设等比数列{an}的公比为q,
则
,解得
,
故数列{an}的通项公式为:an=(-2)n-1,
(2)由(1)可知an=(-2)n-1,
故Sk=
=
,
所以Sk+1=
,Sk+2=
,
∴Sk+1+Sk+2=
+
=
=
=
,
而2Sk=2
=
=
=
,
故Sk+1+Sk+2=2Sk,即Sk+2,Sk,Sk+1成等差数列
则
|
|
故数列{an}的通项公式为:an=(-2)n-1,
(2)由(1)可知an=(-2)n-1,
故Sk=
1×[1-(-2)k-1] |
1-(-2) |
1-(-2)k-1 |
3 |
所以Sk+1=
1-(-2)k |
3 |
1-(-2)k+1 |
3 |
∴Sk+1+Sk+2=
1-(-2)k |
3 |
1-(-2)k+1 |
3 |
2-(-2)k-(-2)k+1 |
3 |
=
2-(-2)k(1-2) |
3 |
2+(-2)k |
3 |
而2Sk=2
1-(-2)k-1 |
3 |
2-2(-2)k-1 |
3 |
2+(-2)(-2)k-1 |
3 |
2+(-2)k |
3 |
故Sk+1+Sk+2=2Sk,即Sk+2,Sk,Sk+1成等差数列
点评:本题考查等比数列的前n项和,以及等差关系的确定,属中档题.
练习册系列答案
相关题目