题目内容

(2013•泰安一模)设等比数列{an}的前n项和为Sn,a4=a1-9,a5,a3,a4成等差数列.
(1)求数列{an}的通项公式,
(2)证明:对任意k∈N+,Sk+2,Sk,Sk+1成等差数列.
分析:(1)由题意可建立
a1q3=a1-9
2a1q2=a1q3+a1q4
,解之可得
a1=1
q=-2
,进而可得通项公式;
(2)由(1)可求Sk,进而可得Sk+2,Sk+1,由等差中项的定义验证Sk+1+Sk+2=2Sk即可
解答:解:(1)设等比数列{an}的公比为q,
a1q3=a1-9
2a1q2=a1q3+a1q4
,解得
a1=1
q=-2

故数列{an}的通项公式为:an=(-2)n-1
(2)由(1)可知an=(-2)n-1
故Sk=
1×[1-(-2)k-1]
1-(-2)
=
1-(-2)k-1
3

所以Sk+1=
1-(-2)k
3
,Sk+2=
1-(-2)k+1
3

∴Sk+1+Sk+2=
1-(-2)k
3
+
1-(-2)k+1
3
=
2-(-2)k-(-2)k+1
3

=
2-(-2)k(1-2)
3
=
2+(-2)k
3

而2Sk=2
1-(-2)k-1
3
=
2-2(-2)k-1
3
=
2+(-2)(-2)k-1
3
=
2+(-2)k
3

故Sk+1+Sk+2=2Sk,即Sk+2,Sk,Sk+1成等差数列
点评:本题考查等比数列的前n项和,以及等差关系的确定,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网