题目内容

如图,在多面体ABCDEF中,已知面ABCD是边长为3的正方形,EF//AB,

EF=3/2,EF与面AC的距离为2,则该多面体的体积为(     )

 A.9/2       B.5     C,     D.5/2

D


解析:

连接BE、CE则四棱锥E-ABCD的体积VE-ABCD=×3×3×2=6,又整个几何体大于部分的体积,所求几何体的体积V> VE-ABCD,选D

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网