题目内容

15.已知抛物线y2=4x,直线y=x-1,求直线与抛物线的交点坐标.

分析 联立方程得$\left\{\begin{array}{l}{{y}^{2}=4x}&{①}\\{y=x-1}&{②}\end{array}\right.$,利用代入消元法即可解出.

解答 解:联立方程得$\left\{\begin{array}{l}{{y}^{2}=4x}&{①}\\{y=x-1}&{②}\end{array}\right.$,
将②代入①(1)得:x2-6x+1=0,
解得:$x=3±2\sqrt{2}$,
代入②得:$y=2±2\sqrt{2}$,
∴$\left\{\begin{array}{l}{x=3+2\sqrt{2}}\\{y=2+2\sqrt{2}}\end{array}\right.$或$\left\{\begin{array}{l}{x=3-2\sqrt{2}}\\{y=2-2\sqrt{2}}\end{array}\right.$
∴直线与抛物线的交点坐标为$(3+2\sqrt{2},2+2\sqrt{2})$或$(3-2\sqrt{2},2-2\sqrt{2})$.

点评 本题考查了代入消元法、直线与抛物线的交点坐标求法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网