题目内容

(本小题满分12分)如图:直角梯形ABCD中,AD∥BC,∠ABC=90°,E、F分别是边AD和BC上的点,且EF∥AB,AD =2AE =2AB = 4AF= 4,将四边形EFCD沿EF折起使AE=AD.

(1)求证:AF∥平面CBD;

(2)求平面CBD与平面ABFE夹角的余弦值.

 

【答案】

(1)见解析   (2)

【解析】(1)利用直线与平面平行的判定证明线面平行;(2)根据条件建立空间直角坐标系,然后求出两个面的法向量,根据法向量的夹角求出二面角

(1)证明:,所以延长会相交,

,则

所以四边形是平行四边形,

,又平面

平面;……………………6分

(2)设的中点为,则

平面

平面.………………………………………………………………8分

如图:以点为原点,过点且平行于的直线为轴,所在直线为轴,所在直线为轴,建立空间直角坐标系。则平面的法向量为,点的坐标分别为,………………10分

设平面的法向量,则

,则,即

平面与平面夹角的余弦值为.…………………………………12分

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网