题目内容
1.设x1,x2,x3均为实数,且 $(\frac{1}{3})^{{x}_{1}}$=log2(x1+1),$(\frac{1}{3})^{{x}_{2}}$=log3x2,$(\frac{1}{3})^{{x}_{3}}$=log2x3,则( )A. | x1<x3<x2 | B. | x3<x2<x1 | C. | x3<x1<x2 | D. | x3<x1<x2 |
分析 利用指数函数与对数函数的图象与性质画出图象,即可得出结论.
解答 解:如图所示,
由图象可知:x1<x3<x2.
故选:A.
点评 本题考查了指数函数与对数函数的图象与性质,属于基础题.
练习册系列答案
相关题目
11.已知等差数列{an}的公差d≠0,且a3=2a1,则$\frac{{{a_1}+{a_3}}}{{{a_2}+{a_4}}}$的值为( )
A. | $\frac{5}{6}$ | B. | $\frac{4}{5}$ | C. | $\frac{3}{4}$ | D. | $\frac{2}{3}$ |
12.某出租车公司响应国家节能减排的号召,已陆续购买了140辆纯电动汽车作为运营车辆,目前我国主流纯电动汽车按续驶里程数R(单位:公里)分为3类,即A:80≤R<150,B:150≤R<250,C:R≥250.对这140辆车的行驶总里程进行统计,结果如下表:
(Ⅰ)从这140辆汽车中任取1辆,求该车行驶总里程超过5万公里的概率;
(Ⅱ)公司为了了解这些车的工作状况,决定抽取14辆车进行车况分析,按表中描述的六种情况进行分层抽样,设从C类车中抽取了n辆车.
(ⅰ)求n的值;
(ⅱ)如果从这n辆车中随机选取2辆车,求恰有1辆车行驶总里程超过5万公里的概率.
类型 | A | B | C |
已行驶总里程不超过5万公里的车辆数 | 10 | 40 | 30 |
已行驶总里程超过5万公里的车辆数 | 20 | 20 | 20 |
(Ⅱ)公司为了了解这些车的工作状况,决定抽取14辆车进行车况分析,按表中描述的六种情况进行分层抽样,设从C类车中抽取了n辆车.
(ⅰ)求n的值;
(ⅱ)如果从这n辆车中随机选取2辆车,求恰有1辆车行驶总里程超过5万公里的概率.
16.已知非零向量$\overrightarrow{AB}$和$\overrightarrow{BP}$,又知$\overrightarrow{BP}$=$\overrightarrow{AB}$,则点P与AB的关系是( )
A. | P在直线AB外 | B. | P在AB延长线上 | C. | P点与B点重合 | D. | 以上都有可能 |
13.函数f(x)=2sin(x-$\frac{π}{6}$)cos(x-$\frac{π}{6}$)图象的一条对称轴方程是( )
A. | x=$\frac{π}{6}$ | B. | x=$\frac{π}{3}$ | C. | x=$\frac{5π}{12}$ | D. | x=$\frac{2π}{3}$ |
10.“方程$\frac{{x}^{2}}{k-2}$+$\frac{{y}^{2}}{k-5}$=1表示的曲线是双曲线”是“2<k<5”的( )
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分又不充要条件 |