题目内容

已知:函数f(x)=Asin(ωx+α)(A>0,ω>0,-
π
2
<α<
π
2
)
的最小正周期是π,且当x=
π
6
时f(x)取得最大值3.
(1)求f(x)的解析式及单调增区间.
(2)若x0∈[0,2π),且f(x0)=
3
2
,求x0
(3)将函数f(x)的图象向右平移m(m>0)个单位长度后得到函数y=g(x)的图象,且y=g(x)是偶函数,求m的最小值.
分析:(1)利用函数的周期,最值,求出A,T然后求出ω,通过当x=
π
6
时f(x)取得最大值3求出α,从而求f(x)的解析式及单调增区间.
(2)若x0∈[0,2π),且f(x0)=
3
2
,求出x0即可.
(3)利用函数f(x)的图象向右平移m(m>0)个单位长度后得到函数y=g(x)的图象,且y=g(x)是偶函数,求出g(x),然后再求m的最小值.
解答:解:(1)由已知条件知道:A=3,
ω
(1分)
∴ω=2(2分)∴f(
π
6
)=3sin(2•
π
6
+α)=3

2•
π
6
+α=2kπ+
π
2
(k∈Z)
又-
π
2
<α<
π
2
α=
π
6
(3分)
f(x)=3sin(2x+
π
6
)
(4分)
2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
(k∈Z)
可得kπ-
π
3
≤x≤kπ+
π
6
(k∈Z)

∴f(x)的单调增区间是[kπ-
π
3
,kπ+
π
6
](k∈Z)
(6分)
(2)f(x0)=3sin(2x0+
π
6
)=
3
2
sin(2x0+
π
6
)=
1
2

2x0+
π
6
=2kπ+
π
6
2kπ+
5
6
π(k∈Z)

∴x0=kπ或kπ+
π
3
(k∈Z)
(9分)
又x0∈[0,2π)∴x0=0,π,
π
3
4
3
π
(11分)
(3)由条件可得:g(x)=3sin(2(x-m)+
π
6
)=3sin(2x-2m+
π
6
)
(13分)
又g(x)是偶函数,所以g(x)的图象关于y轴对称,
∴x=0时,g(x)取最大或最小值(14分)
3sin(-2m+
π
6
)=±3

-2m+
π
6
=kπ+
π
2
(k∈Z)
m=-
2
-
π
6
(k∈Z)
(15分)
又m>0∴m的最小值是
π
3
(16分)
点评:本题考查三角函数的最值,正弦函数的单调性,函数y=Asin(ωx+φ)的图象变换,化为一个角的一个三角函数的形式是求最值的常用方法.能够正确取得函数在给定区间上的最值,是顺利解题的前提.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网