题目内容

过双曲线
x2
a2
-
y2
b2
=1
的左焦点F作⊙O:x2+y2=a2的两条切线,记切点为A,B,双曲线左顶点为C,若∠ACB=120°,则双曲线的渐近线方程为(  )
A、y=±
3
x
B、y=±
3
3
x
C、y=±
2
x
D、y=±
2
2
x
分析:根据双曲线的方程得到渐近线为y=±
b
a
x,结合题中的条件画出图象进而得到∠AFO=30°,即得到a与c的关系式,进而得到a与b的关系式,即可得到答案.
解答:解:由题意可得:双曲线的方程为
x2
a2
-
y2
b2
=1

所以双曲线的渐近线方程为y=±
b
a
x.
精英家教网
因为若∠ACB=120°,
所以根据图象的特征可得:∠AFO=30°,
所以c=2a,
又因为b2=c2-a2
所以
b
a
=
3

所以双曲线的渐近线方程为y=±
3
x

故选A.
点评:解决此类问题的关键是熟练掌握双曲线与圆的位置关系,结合有关条件得到a、b与c的关系,进而得到答案.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网