题目内容
(12分)已知抛物线
:
过点
.(1)求抛物线
的方程,并求其准线方程;
(2)是否存在平行于
(
为坐标原点)的直线
,使得直线
与抛物线
有公共点,且直线
与
的
距离等于
?若存在,求出直线
的方程;若不存在,说明理由.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000412824313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000412840829.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000412855549.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000412824313.png)
(2)是否存在平行于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000412918379.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000412933292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000412949280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000412949280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000412824313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000412918379.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000412949280.png)
距离等于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000413043403.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000412949280.png)
(1)
. (2)符合题意的直线存在,其方程为
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000413105329.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000413121583.png)
试题分析:(1)将点(1,-2)代入抛物线方程可求出p值,从而得到抛物线的方程,进而得到其准线方程.
(2) 假设存在符合题意的直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000412949280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000413199761.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000413230426.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000413245493.png)
然后再利用平行线间的距离公式得到t的方程求出t值,看是否满足t的范围,从而确定是否存在这样的直线.
(1)将
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000413261476.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000412840829.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000413511415.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000412824313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000413542542.png)
其准线方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000413105329.png)
(2)假设存在符合题意的直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000412949280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000413199761.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000413698887.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000413869727.png)
因为直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000412949280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000412824313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000413916618.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000413245493.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000412918379.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000412949280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000413994559.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000414010567.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000414025332.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000413245493.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000414072195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000414088313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000413121583.png)
点评:直线与抛物线的位置关系的判定可由它们的方程联立消去一个变量后得到另一个变量的二次方程,再通过判别式进行判断即可.但要注意二次项系数是否为零的问题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目