题目内容
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125137761756158/SYS201310251251377617561016_ST/images0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125137761756158/SYS201310251251377617561016_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125137761756158/SYS201310251251377617561016_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125137761756158/SYS201310251251377617561016_ST/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125137761756158/SYS201310251251377617561016_ST/3.png)
(1)若函数f(x)=1-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125137761756158/SYS201310251251377617561016_ST/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125137761756158/SYS201310251251377617561016_ST/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125137761756158/SYS201310251251377617561016_ST/6.png)
(2)求函数y=f(x)的单调增区间;
并在给出的坐标系中画出y=f(x)在区间[0,π]上的图象.
【答案】分析:(1)化简函数的解析式为 f(x)=2sin(2x+
)+1,由f(x)=1-
,解得sin(2x+
)=-
,结合x的
范围,求出x值.
(2)由 2kπ-
≤2x+
≤2kπ+
,k∈z,求得x的范围即得单调增区间,有五点法做出其图象.
解答:解:(1)依题设得函数f(x)=2cos2x+
sin2x=1+2cos2x+
sin2x=2sin(2x+
)+1,
由 2sin(2x+
)=1=1-
,∴sin(2x+
)=-
.∵-
≤x≤
,
∴-
≤2x+
≤
,∴2x+
=-
,x=-
.
(2)由 2kπ-
≤2x+
≤2kπ+
,k∈z,得 kπ-
≤x≤kπ+
,
得函数单调增区间为[kπ-
,kπ+
].
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125137761756158/SYS201310251251377617561016_DA/images34.png)
点评:本题考查两个向量的数量积公式的应用,正弦函数的单调性,以及用五点法作y=Asin(ωx+∅)的简图,化简函数
f(x)的解析式是解题的突破口.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125137761756158/SYS201310251251377617561016_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125137761756158/SYS201310251251377617561016_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125137761756158/SYS201310251251377617561016_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125137761756158/SYS201310251251377617561016_DA/3.png)
范围,求出x值.
(2)由 2kπ-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125137761756158/SYS201310251251377617561016_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125137761756158/SYS201310251251377617561016_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125137761756158/SYS201310251251377617561016_DA/6.png)
解答:解:(1)依题设得函数f(x)=2cos2x+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125137761756158/SYS201310251251377617561016_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125137761756158/SYS201310251251377617561016_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125137761756158/SYS201310251251377617561016_DA/9.png)
由 2sin(2x+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125137761756158/SYS201310251251377617561016_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125137761756158/SYS201310251251377617561016_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125137761756158/SYS201310251251377617561016_DA/12.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125137761756158/SYS201310251251377617561016_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125137761756158/SYS201310251251377617561016_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125137761756158/SYS201310251251377617561016_DA/15.png)
∴-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125137761756158/SYS201310251251377617561016_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125137761756158/SYS201310251251377617561016_DA/17.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125137761756158/SYS201310251251377617561016_DA/18.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125137761756158/SYS201310251251377617561016_DA/19.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125137761756158/SYS201310251251377617561016_DA/20.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125137761756158/SYS201310251251377617561016_DA/21.png)
(2)由 2kπ-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125137761756158/SYS201310251251377617561016_DA/22.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125137761756158/SYS201310251251377617561016_DA/23.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125137761756158/SYS201310251251377617561016_DA/24.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125137761756158/SYS201310251251377617561016_DA/25.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125137761756158/SYS201310251251377617561016_DA/26.png)
得函数单调增区间为[kπ-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125137761756158/SYS201310251251377617561016_DA/27.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125137761756158/SYS201310251251377617561016_DA/28.png)
x | ![]() | ![]() | ![]() | ![]() | ![]() | π | |
y | 2 | 3 | 2 | -1 | 2 |
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125137761756158/SYS201310251251377617561016_DA/images34.png)
点评:本题考查两个向量的数量积公式的应用,正弦函数的单调性,以及用五点法作y=Asin(ωx+∅)的简图,化简函数
f(x)的解析式是解题的突破口.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目