题目内容
已知数列{xn}满足x1=x2=1并且xn+1 |
xn |
xn |
xn-1 |
(1)若x1、x3、x5成等比数列,求参数λ的值;
(2)设0<λ<1,常数k∈N*且k≥3,证明
x1+k |
x1 |
x2+k |
x2 |
xn+k |
xn |
λk |
1-λk |
分析:(1)令n=2,3,4代入到
=λ
,(λ为非零参数,n=2,3,4,…)中得到x1、x3、x5若它们成等比数列则根据x32=x1x5,即求出λ即可;
(2)设an=
,由已知,数列{an}是以
=1为首项、λ为公比的等比数列,化简不等式左边由0<λ<1,常数k∈N*且k≥3得证.
xn+1 |
xn |
xn |
xn-1 |
(2)设an=
xn+1 |
xn |
x2 |
x1 |
解答:解:(1)解:由已知x1=x2=1,且
=λ
?x3=λ,
=λ
?x4=λ3,
=λ
?x5=λ6.
若x1、x3、x5成等比数列,
则x32=x1x5,即λ2=λ6.而λ≠0,
解得λ=±1.
(2)证明:设an=
,由已知,数列{an}是以
=1为首项、λ为公比的等比数列,
故
=λn-1,
则
=
.
=λn+k-2.λn+k-3λn-1
λkn+
.
因此,对任意n∈N*,
+
+…+
=λk+
+λ2k+
+…+λkn+
=λ
(λk+λ2k+…+λnk)
=λ
.
当k≥3且0<λ<1时,0<λ
≤1,0<1-λnk<1,
所以
+
+…+
<
(n∈N*).
x3 |
x2 |
x2 |
x1 |
x4 |
x3 |
x3 |
x2 |
x5 |
x4 |
x4 |
x3 |
若x1、x3、x5成等比数列,
则x32=x1x5,即λ2=λ6.而λ≠0,
解得λ=±1.
(2)证明:设an=
xn+1 |
xn |
x2 |
x1 |
故
xn+1 |
xn |
则
xn+k |
xn |
xn+k |
xn+k-1 |
xn+k-1 |
xn+k-2 |
xn+1 |
xn |
λkn+
k(k-3) |
2 |
因此,对任意n∈N*,
x1+k |
x1 |
x2+k |
x2 |
xn+k |
xn |
k(k-3) |
2 |
k(k-3) |
2 |
k(k-3) |
2 |
k(k-3) |
2 |
=λ
k(k-3) |
2 |
λk(1-λnk) |
1-λk |
当k≥3且0<λ<1时,0<λ
k(k-3) |
2 |
所以
x1+k |
x1 |
x2+k |
x2 |
xn+k |
xn |
λk |
1-λk |
点评:本小题以数列的递推关系为载体,主要考查等比数列的等比中项及前n项和公式、等差数列前n项和公式、不等式的性质及证明等基础知识,考查运算能力和推理论证能力.

练习册系列答案
相关题目