题目内容
【题目】在 中, 所对的边分别为,且.
(1)求角的大小;
(2)若, , 为的中点,求的长.
【答案】(1);(2).
【解析】试题分析:(1)由已知,利用正弦定理可得a2=b2+c2-2b,再利用余弦定理即可得出cosA,结合A的范围即可得解A的值.
(2)△ABC中,先由正弦定理求得AC的值,再由余弦定理求得AB的值,△ABD中,由余弦定理求得BD的值.
试题解析:
(1)因为asin A=(b-c)sin B+(c-b)·sin C,
由正弦定理得a2=(b-c)b+(c-b)c,
整理得a2=b2+c2-2bc,
由余弦定理得cos A===,
因为A∈(0,π),所以A=.
(2)由cos B=,得sin B===,
所以cos C=cos[π-(A+B)]=-cos(A+B)=-=-,
由正弦定理得b===2,
所以CD=AC=1,
在△BCD中,由余弦定理得BD2=()2+12-2×1××=13,
所以BD=.
【题目】某市高中全体学生参加某项测评,按得分评为两类(评定标准见表1).根据男女学生比例,使用分层抽样的方法随机抽取了10000名学生的得分数据,其中等级为的学生中有40%是男生,等级为的学生中有一半是女生.等级为和的学生统称为类学生,等级为和的学生统称为类学生.整理这10000名学生的得分数据,得到如图2所示的频率分布直方图,
类别 | 得分() | |
表1
(I)已知该市高中学生共20万人,试估计在该项测评中被评为类学生的人数;
(Ⅱ)某5人得分分别为45,50,55,75,85.从这5人中随机选取2人组成甲组,另外3人组成乙组,求“甲、乙两组各有1名类学生”的概率;
(Ⅲ)在这10000名学生中,男生占总数的比例为51%, 类女生占女生总数的比例为, 类男生占男生总数的比例为,判断与的大小.(只需写出结论)