题目内容
已知曲线C的极坐标方程为,直线的参数方程为(t为参数,).
(1)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;
(2)若直线经过点,求直线被曲线C截得的线段AB的长.
(1),曲线C是顶点为O(0,0),焦点为F(1,0)的抛物线;(2)8.
解析试题分析:本题主要考查极坐标方程与直角坐标方程的互化,直线的参数方程,韦达定理等基础知识,考查学生的转化能力和计算能力.第一问,利用极坐标与直角坐标的互化公式,进行互化,并写出图形形状;第二问,由直线的参数方程得出直线过,若还过,则,则直线的方程可进行转化,由于直线与曲线C相交,所以两方程联立,得到关于t的方程,设出A,B点对应的参数,所以,利用两根之和,两根之积进行转化求解.
试题解析:(1)曲线C的直角坐标方程为,故曲线C是顶点为O(0,0),焦点为F(1,0)的抛物线; .5分
(2)直线的参数方程为( t为参数,0≤<).故l经过点(0,1);若直线经过点(1,0),则
直线的参数方程为(t为参数)
代入,得
设A、B对应的参数分别为,则
="8" .10分
考点:1.极坐标与直角坐标的互化;2.直线的参数方程;3.直线与曲线的位置关系.
练习册系列答案
相关题目