题目内容

(本题满分12分)设函数f (x) = (bc∈N*),若方程f(x) = x的解为0,2,且f (–2)<–.(Ⅰ)试求函数f(x)的单调区间;(Ⅱ)已知各项不为零的数列{an}满足4Sn·f () = 1,其中Sn为{an}的前n项和.求证:

(Ⅰ) f(x)的单调递增区间为(–∞,0),(2,+∞)单调递减区间为(0,1),(1,2)(Ⅱ) 略


解析:

(Ⅰ)解

.------(2分)

f (–2) =又∵bc∈N*    ∴c = 2,b = 2

f (x) =.-------(4分)

f′(x)>0得:x<0或x>2, 令f′(x)<0得:0<x<2∴f(x)的单调递增区间为(–∞,0),

(2,+∞)f(x)的单调递减区间为(0,1),(1,2)--------(6分)

(Ⅱ)证明:由已知可得:2Sn = an 

两式相减得:(an + an – 1) (anan – 1+1) = 0 (n≥2)∴an = –an –1anan–1 = –1  -(7分)

n =1 时,2a1 = a1

an = –an–1,则a2 = –a1 = 1与an≠1矛盾.(定义域要求an≠1)∴anan–1 = 1,∴an = –n.(8分)

要证的不等式转化为

先证不等式g (x) = x –ln(1 + x),h(x) = ln(x +1) –-----(10分)

g′(x) =h′(x) =x>0   ∴g′(x)>0,h′(x)>0∴g (x), h(x)在(0,+∞)上单调递增,

 ∴g (x)>g (0) = 0,h(x)>h(0) = 0   ∴

 故,即-----(12分)

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网