题目内容
11.已知集合A={x|x2+2x-3<0},B={x|$\frac{x}{x-2}$<0},则A∩B=( )A. | {x|x<0} | B. | {x|x>1} | C. | {x|0<x≤1} | D. | {x|0<x<1} |
分析 求出A与B中不等式的解集确定出A与B,找出两集合的交集即可.
解答 解:由A中不等式变形得:(x-1)(x+3)<0,
解得:-3<x<1,即A={x|-3<x<1},
由B中不等式变形得:x(x-2)<0,
解得:0<x<2,即B={x|0<x<2},
则A∩B={x|0<x<1},
故选:D.
点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关题目
1.设a>0,且a≠1,函数y=2+loga(x+2)的图象恒过定点P,则P点的坐标是( )
A. | (-1,2) | B. | (2,-1) | C. | (3,-2) | D. | (3,2) |
6.要建造一个容量为1200m3,深为6m的长方体无盖蓄水池,池壁的造价为95元/m2,池底的造价为135元/m2,求当水池的长在什么范围时,才能使水池的总造价不超过61200元(规定长大于等于宽).
20.若三棱锥P-ABC的正视图为如图所示边长为2的正三角形,俯视图为等腰直角三角形,则三棱锥的体积是( )
A. | $\sqrt{3}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{2\sqrt{3}}{3}$ | D. | $\frac{4\sqrt{3}}{3}$ |