题目内容
已知函数f(x)=x3-6x2+11x,其图象记为曲线C.
(1)求曲线C在点A(3,f(3))处的切线方程l;
(2)记曲线C与l的另一个交点为B(x2,f(x2)),线段AB与曲线C所围成的封闭图形的面积为S,求S的值.
(1)求曲线C在点A(3,f(3))处的切线方程l;
(2)记曲线C与l的另一个交点为B(x2,f(x2)),线段AB与曲线C所围成的封闭图形的面积为S,求S的值.
分析:(1)根据函数f(x)=x3-6x2+11x,对其进行求导,求其在x=3处的斜率,根据点斜式求出切线方程;
(2)曲线C与l的另一个交点为B(x2,f(x2)),联立方程解出点B,
(2)曲线C与l的另一个交点为B(x2,f(x2)),联立方程解出点B,
解答:解(1)∵函数f(x)=x3-6x2+11x,
∴f'(x)=3x2-12x+11,
f'(3)=2,又f(3)=6,
∴切线方程l为y-6=2(x-3),
即y=2x.
(2)曲线C与l的另一个交点为B(x2,f(x2)),
∴
得B(0,0)
∴S=
(x3-6x2+11x-2x)dx=(
x4-2x3+
x2)|
=
∴f'(x)=3x2-12x+11,
f'(3)=2,又f(3)=6,
∴切线方程l为y-6=2(x-3),
即y=2x.
(2)曲线C与l的另一个交点为B(x2,f(x2)),
∴
|
得B(0,0)
∴S=
∫ | 3 0 |
1 |
4 |
9 |
2 |
3 0 |
27 |
4 |
点评:此题主要考查利用导数研究曲线上某点切线方程,及定积分的运算,计算时要仔细,此题是一道基础题;
练习册系列答案
相关题目
已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
)的部分图象如图所示,则f(x)的解析式是( )
π |
2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|