题目内容

设命题P:函数在区间[-1,1]上单调递减;
命题q:函数的值域是R.如果命题p或q为真命题,p且q为假命题,求的取值范围.

试题分析:由函数在区间[-1,1]上单调递减转化为其导函数在[-1,1]上恒成立,分离变量可求解;由函数的值域是R转化为对任意的实数有意义,因此其判别式.再结合两命题的真假分类讨论求解的取值范围.
试题解析:p为真命题上恒成立,
上恒成立           4分
q为真命题恒成立         6分
由题意p和q有且只有一个是真命题
P真q假 p假q真
综上所述:.                   12分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网