题目内容
设函数f(x)=|x-1|+|x-2|(1)求不等式f(x)≤3的解集;
(2)若不等式||a+b|-|a-b||≤|a|f(x)(a≠0,a∈R,b∈R)恒成立,求实数x的范围.
分析:(1)根据绝对值的代数意义,去掉函数f(x)=|x-1|+|x-2|中的绝对值符号,画出函数函数f(x)的图象,根据图象求解不等式f(x)≤3,
(2)由||a+b|-|a-b||≤2|a|,得2|a|≤|a|f(x),由a≠0,得2≤f(x),从而解得实数x的范围.
(2)由||a+b|-|a-b||≤2|a|,得2|a|≤|a|f(x),由a≠0,得2≤f(x),从而解得实数x的范围.
解答:解:(1)f(x)=
,…(3分) 所以解集[0,3]…(2分)
(2)由||a+b|-|a-b||≤2|a|,…(2分)
得2|a|≤|a|f(x),由a≠0,得2≤f(x),…(1分)
解得x≤
或x≥
…(2分)
|
(2)由||a+b|-|a-b||≤2|a|,…(2分)
得2|a|≤|a|f(x),由a≠0,得2≤f(x),…(1分)
解得x≤
1 |
2 |
5 |
2 |
点评:考查了绝对值的代数意义,去绝对值体现了分类讨论的数学思想;根据函数图象求函数的最值,体现了数形结合的思想.属中档题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
设函数f(x)的定义域为A,若存在非零实数t,使得对于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),则称f(x)为C上的t低调函数.如果定义域为[0,+∞)的函数f(x)=-|x-m2|+m2,且 f(x)为[0,+∞)上的10低调函数,那么实数m的取值范围是( )
A、[-5,5] | ||||||||
B、[-
| ||||||||
C、[-
| ||||||||
D、[-
|