题目内容

设函数f(x)=|x-1|+|x-2|
(1)求不等式f(x)≤3的解集;
(2)若不等式||a+b|-|a-b||≤|a|f(x)(a≠0,a∈R,b∈R)恒成立,求实数x的范围.
分析:(1)根据绝对值的代数意义,去掉函数f(x)=|x-1|+|x-2|中的绝对值符号,画出函数函数f(x)的图象,根据图象求解不等式f(x)≤3,
(2)由||a+b|-|a-b||≤2|a|,得2|a|≤|a|f(x),由a≠0,得2≤f(x),从而解得实数x的范围.
解答:解:(1)f(x)=
2x-3,x≥2
1,1<x<2
3-2x,x≤1
,…(3分)   所以解集[0,3]…(2分)
(2)由||a+b|-|a-b||≤2|a|,…(2分)
得2|a|≤|a|f(x),由a≠0,得2≤f(x),…(1分)
解得x
1
2
或x
5
2
   …(2分)
点评:考查了绝对值的代数意义,去绝对值体现了分类讨论的数学思想;根据函数图象求函数的最值,体现了数形结合的思想.属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网