题目内容
已知函数,其中.⑴若,求曲线在点处的切线方程;⑵若在区间上,恒成立,求a的取值范围.
⑴y="6x-9(2)" 0<a<5
解析
(本题满分13分)为了保护环境,某工厂在政府部门的支持下,进行技术改进: 把二氧化碳转化为某种化工产品,经测算,该处理成本(万元)与处理量(吨)之间的函数关系可近似地表示为: , 且每处理一吨二氧化碳可得价值为万元的某种化工产品. (Ⅰ)当 时,判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元,该工厂才不亏损? (Ⅱ) 当处理量为多少吨时,每吨的平均处理成本最少.
已知函数。(1)若,函数在上既能取到极大值,又能取到极小值,求的取值范围;(2)当时,对任意的恒成立,求的取值范围;
已知函数=,.(1)求函数在区间上的值域T;(2)是否存在实数,对任意给定的集合T中的元素t,在区间上总存在两个不同的,使得成立.若存在,求出的取值范围;若不存在,请说明理由;(3
(本题满分14分)定义在(0,+∞)上的函数,,且在处取极值。(Ⅰ)确定函数的单调性。(Ⅱ)证明:当时,恒有成立.
已知函数(1)求在点处的切线方程;(2)若存在,使成立,求的取值范围;(3)当时,恒成立,求的取值范围.
(本小题满分14分)已知函数.(1)若曲线在点处的切线与直线垂直,求函数的单调区间;(2)若对于都有成立,试求的取值范围;(3)记.当时,函数在区间上有两个零点,
(本题满分16分)已知函数.(1)求函数在点处的切线方程;(2)若在区间上恒成立,求的取值范围;(3)当时,求证:在区间上,满足恒成立的函数有无穷多个.
设函数为奇函数,其图象在点处的切线与直线垂直,导函数的最小值为.(Ⅰ)求,,的值;(Ⅱ)求函数的单调递增区间.(Ⅲ)求函数在上的最大值和最小值