题目内容
数列{an}满足a1=2,且an+1=2-
.
(I)证明:数列{
}为等差数列;
(II)若bn=
•an,求数列{bn}的前n项和Sn.
1 |
an |
(I)证明:数列{
1 |
an-1 |
(II)若bn=
n |
2n |
分析:(I)根据an+1=2-
,可得
-
=1,从而可得{
}是以1为首项,公差为1的等差数列;
(II)先确定数列{an}的通项,进而可得bn=
×an=
,利用错位相减法,可求数列的和.
1 |
an |
1 | ||||
|
1 | ||||
|
1 |
an-1 |
(II)先确定数列{an}的通项,进而可得bn=
n |
2n |
n+1 |
2n |
解答:(I)证明:∵an+1=2-
∴an+1-1=1-
∴
∴
-
=1
∴{
}是以1为首项,公差为1的等差数列.
(II)解:由上知:
=1+(n-1)×1=n,∴an=
,n∈N*
∴bn=
×an=
Sn=b1+b2+b3+…+bn=2×(
)1+3×(
)2+4×(
)3+…+(n+1)(
)n
∴
Sn=2×(
)2+3×(
)3+4×(
)4+…+(n+1)(
)n+1
错位相减得:
Sn=2×(
)1+(
)2+(
)3+…+(
)n-(n+1)(
)n+1
∴Sn=3-(n+3)×(
)n
1 |
an |
∴an+1-1=1-
1 |
an |
∴
|
∴
1 | ||||
|
1 | ||||
|
∴{
1 |
an-1 |
(II)解:由上知:
1 |
an-1 |
n+1 |
n |
∴bn=
n |
2n |
n+1 |
2n |
Sn=b1+b2+b3+…+bn=2×(
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
∴
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
错位相减得:
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
∴Sn=3-(n+3)×(
1 |
2 |
点评:本题考查等差数列的证明,考查数列的求和,解题的关键是构造新数列,利用错位相减法求数列的和.

练习册系列答案
相关题目