题目内容
已知平面上直线l的方向向量e=(),点O(0,0)和A(1,-2)在l上的射影分别是O1、A1,则=λe,其中λ等于( )A. B. C.2 D.-2
解析:方法一:由向量在已知向量上的射影的定义知
λ=||cos〈e,〉==·=-=-2.
方法二:利用数形结合的思想,作图可得.令向量e过原点,故与e方向相反.排除A、C,检验B、D可知D正确.
答案:D
练习册系列答案
相关题目
已知平面上直线l的方向向量
=(-
,
),点O(0,0)和A(1,-2)在l上的射影分别是O'和A′,则
=λ
,其中λ等于( )
e |
4 |
5 |
3 |
5 |
O′A′ |
e |
A、
| ||
B、-
| ||
C、2 | ||
D、-2 |
已知平面上直线l的方向向量
=(
,-
),点O(0,0)和P(-2,2)在直线l的正射影分别是O'和P',且
=λ
,则λ等于( )
e |
| ||
2 |
1 |
2 |
O′P′ |
e |
A、-2(
| ||
B、2(
| ||
C、-(
| ||
D、
|