题目内容
【题目】如图,正方体的棱长为1,为中点,连接,则异面直线和所成角的余弦值为_____.
【答案】
【解析】
连接CD1,CM,由四边形A1BCD1为平行四边形得A1B∥CD1,即∠CD1M为异面直线A1B和D1M所成角,再由已知求△CD1M的三边长,由余弦定理求解即可.
如图,
连接,由,可得四边形为平行四边形,
则,∴为异面直线和所成角,
由正方体的棱长为1,为中点,
得,.
在中,由余弦定理可得,.
∴异面直线和所成角的余弦值为.
故答案为:.
【点睛】
本题考查异面直线所成角的求法,异面直线所成的角常用方法有:将异面直线平移到同一平面中去,达到立体几何平面化的目的;或者建立坐标系,通过求直线的方向向量得到直线夹角或其补角.
【题型】填空题
【结束】
16
【题目】在中,角所对的边分别是,是的中点,,,面积的最大值为_____.
【答案】2
【解析】
试题在△ABM和△ABC中分别使用余弦定理得出bc的关系,求出cosA,sinA,代入面积公式求出最大值.
解:在△ABM中,由余弦定理得:
cosB==.
在△ABC中,由余弦定理得:
cosB==.
∴=.
即b2+c2=4bc﹣8.
∵cosA==,∴sinA==.
∴S=sinA=bc=.
∴当bc=8时,S取得最大值2.
故答案为2.
【题目】从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:
分组(重量) | ||||
频数(个) | 5 | 10 | 20 | 15 |
(1) 根据频数分布表计算苹果的重量在的频率;
(2) 用分层抽样的方法从重量在和的苹果中共抽取4个,其中重量在的有几个?
(3) 在(2)中抽出的4个苹果中,任取2个,求重量在和中各有1个的概率.
【题目】在某学校组织的一次篮球总投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分,如果前两次得分之和超过3分即停止投篮,否则投第3次.某同学在A处的命中率q1为0.25,在B处的命中率为q2 . 该同学选择先在A处投一球,以后都在B处投,用ξ表示该同学投篮的训练结束后所得的总分,其分布列为
ξ | 0 | 2 | 3 | 4 | 5 |
P | 0.03 | P1 | P2 | P3 | P4 |
(1)求q2的值;
(2)求随机变量ξ的数学期望Eξ;
(3)试比较该同学选择在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.