题目内容

(2012•孝感模拟)如图,在正方体ABCD-A1B1C1D1中,E,F,G,H,M分别是棱AD,DD1,D1A1,A1A,AB的中点,点N在四边形EFGH的四边及其内部运动,则当N只需满足条件
点N在EG上
点N在EG上
时,就有MN⊥A1C1;当N只需满足条件
点N在EH上
点N在EH上
时,就有MN∥平面B1D1C.
分析:(1)连接EG、EM、GM、BD,利用正方形AA1D1D对边中点连线,得到EG∥AA1,结合AA1⊥平面A1B1C1D1得到EG⊥平面A1B1C1D1,从而A1C1⊥EG.再利用△ABD中的中位线EM∥BD,结合B1D1∥BD,得到EM∥B1D1,再由A1C1⊥B1D1得到A1C1⊥EM,最后利用线面垂直的判定定理得到A1C1⊥平面EGM.因此,当点N在EG上时,直线MN?平面EGM,有MN⊥A1C1成立;
(2)连接MH、A1B,再(1)的基础上有EM∥B1D1,结合线面平行的判定定理可得EM∥平面B1D1C,同理可得MH∥平面B1D1C.最后利用平面与平面平行的判定定理,得到平面EHM∥平面B1D1C,所以当点N在EH上时,MN?平面EHM,有MN∥平面B1D1C成立.
解答:解:(1)连接EG、EM、GM、BD
∵正方形AA1D1D中,E、G分别为AD、A1D1的中点
∴EG∥AA1
∵AA1⊥平面A1B1C1D1
∴EG⊥平面A1B1C1D1
∵A1C1?平面A1B1C1D1
∴A1C1⊥EG
∵在△ABD中,EM是中位线
∴EM∥BD
∵BB1∥DD1且BB1=DD1
∴四边形BB1D1D是平行四边形,B1D1∥BD
∴EM∥B1D1
∵正方形A1B1C1D1中,A1C1⊥B1D1
∴A1C1⊥EM
∵EM∩EG=E,EM、EG?平面EGM
∴A1C1⊥平面EGM
因此,当点N在EG上时,直线MN?平面EGM,有MN⊥A1C1成立;
(2)连接MH、A1B
根据(1)的证明,EM∥B1D1
∵EM?平面B1D1C,B1D1?平面B1D1C,
∴EM∥平面B1D1C
同理可得MH∥平面B1D1C
∵EM∩MH=M,EM、MH?平面EHM
∴平面EHM∥平面B1D1C
∴当点N在EH上时,MN?平面EHM,有MN∥平面B1D1C成立.
故答案为:点N在EG上,点N在EH上
点评:本题以正方体中的直线与直线平行、直线与直线垂直为例,考查了空间的线面平行和线面垂直等位置关系的证明,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网